Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A General Form of Fractional Derivatives for Modelling Purposes in Practice

dc.contributor.author Baleanu, D.
dc.contributor.author Jajarmi, A.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-29T13:46:22Z
dc.date.accessioned 2025-09-18T16:07:51Z
dc.date.available 2024-01-29T13:46:22Z
dc.date.available 2025-09-18T16:07:51Z
dc.date.issued 2023
dc.description.abstract In this paper, we propose new mathematical models for the complex dynamics of the world population growth as well as a human body's blood ethanol concentration by using a general formulation in fractional calculus. In these new models, we employ a recently introduced ψ-Caputo fractional derivative whose kernel is defined based on another function. Meanwhile, a number of comparative experiences are carried out in order to verify the models according to some sets of real data. Simulation results indicate that better approximations are achieved when the systems are modeled by using the new general fractional formulation than the other cases of fractional- and integer-order descriptions. © 2023 IEEE. en_US
dc.identifier.citation Jajarmi, A.; Baleanu, D. "A General Form of Fractional Derivatives for Modelling Purposes in Practice", 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023, Proceedings, 2023. en_US
dc.identifier.doi 10.1109/ICFDA58234.2023.10153131
dc.identifier.isbn 9798350321685
dc.identifier.scopus 2-s2.0-85164539962
dc.identifier.uri https://doi.org/10.1109/ICFDA58234.2023.10153131
dc.identifier.uri https://hdl.handle.net/20.500.12416/14873
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023 -- 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023 -- 14 March 2023 through 16 March 2023 -- Ajman -- 189775 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Blood Ethanol Concentration en_US
dc.subject Fractional Calculus en_US
dc.subject World Population Growth en_US
dc.subject Ψ-Caputo Fractional Derivative en_US
dc.title A General Form of Fractional Derivatives for Modelling Purposes in Practice en_US
dc.title A General Form of Fractional Derivatives for Modelling Purposes in Practice tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 34880044900
gdc.author.scopusid 7005872966
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Jajarmi A., University of Bojnord, Department of Electrical Engineering, Bojnord, Iran; Baleanu D., Çankaya University, Ankara, 06530, Turkey, Institute of Space Sciences, Department of Mathematics, Magurele-Bucharest, R 76900, Romania en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.identifier.openalex W4381328988
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.12
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files