A General Form of Fractional Derivatives for Modelling Purposes in Practice
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Jajarmi, A. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2024-01-29T13:46:22Z | |
| dc.date.accessioned | 2025-09-18T16:07:51Z | |
| dc.date.available | 2024-01-29T13:46:22Z | |
| dc.date.available | 2025-09-18T16:07:51Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | In this paper, we propose new mathematical models for the complex dynamics of the world population growth as well as a human body's blood ethanol concentration by using a general formulation in fractional calculus. In these new models, we employ a recently introduced ψ-Caputo fractional derivative whose kernel is defined based on another function. Meanwhile, a number of comparative experiences are carried out in order to verify the models according to some sets of real data. Simulation results indicate that better approximations are achieved when the systems are modeled by using the new general fractional formulation than the other cases of fractional- and integer-order descriptions. © 2023 IEEE. | en_US |
| dc.identifier.citation | Jajarmi, A.; Baleanu, D. "A General Form of Fractional Derivatives for Modelling Purposes in Practice", 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023, Proceedings, 2023. | en_US |
| dc.identifier.doi | 10.1109/ICFDA58234.2023.10153131 | |
| dc.identifier.isbn | 9798350321685 | |
| dc.identifier.scopus | 2-s2.0-85164539962 | |
| dc.identifier.uri | https://doi.org/10.1109/ICFDA58234.2023.10153131 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14873 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023 -- 2023 International Conference on Fractional Differentiation and Its Applications, ICFDA 2023 -- 14 March 2023 through 16 March 2023 -- Ajman -- 189775 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Blood Ethanol Concentration | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | World Population Growth | en_US |
| dc.subject | Ψ-Caputo Fractional Derivative | en_US |
| dc.title | A General Form of Fractional Derivatives for Modelling Purposes in Practice | en_US |
| dc.title | A General Form of Fractional Derivatives for Modelling Purposes in Practice | tr_TR |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 34880044900 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Jajarmi A., University of Bojnord, Department of Electrical Engineering, Bojnord, Iran; Baleanu D., Çankaya University, Ankara, 06530, Turkey, Institute of Space Sciences, Department of Mathematics, Magurele-Bucharest, R 76900, Romania | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.identifier.openalex | W4381328988 | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.12 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |