On the Non-Commutative Neutrix Product of the Distributions X<sup>λ</Sup>+ and X<sup>μ</Sup>+
| dc.contributor.author | Tas, K. | |
| dc.contributor.author | Fisher, B. | |
| dc.contributor.authorID | 4971 | tr_TR |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-11-25T12:57:00Z | |
| dc.date.accessioned | 2025-09-18T15:44:46Z | |
| dc.date.available | 2022-11-25T12:57:00Z | |
| dc.date.available | 2025-09-18T15:44:46Z | |
| dc.date.issued | 2006 | |
| dc.description | Tas, Kenan/0000-0001-8173-453X | en_US |
| dc.description.abstract | Let f and g be distributions and let g(n) = (g * delta(n))(x), where delta(n)(x) is a certain sequence converging to the Dirac delta function. The non-commutative neutrix product f circle g of f and g is defined to be the limit of the sequence {fg(n)}, provided its limit h exists in the sense that [GRAPHICS] for all functions p in D. It is proved that (x(+)(lambda)ln(p)x(+)) circle (x(+)(mu)ln(q)x(+)) = x(+)(lambda+mu)ln(p+q)x(+), (x(-)(lambda)ln(p)x(-)) circle (x(-)mu ln(q)x(-)) = x(-)(lambda+mu)ln(p+q)x(-), for lambda + mu < -1; lambda,mu,lambda+mu not equal -1,-2,... and p,q = 0,1,2..... | en_US |
| dc.description.publishedMonth | 11 | |
| dc.identifier.citation | Fisher, B.; Taş, Kenan (2006). "On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu)", ACTA MATHEMATICA SINICA-ENGLISH SERIES, Vol. 22, No. 6, pp. 1639-1644. | en_US |
| dc.identifier.doi | 10.1007/s10114-005-0762-7 | |
| dc.identifier.issn | 1439-8516 | |
| dc.identifier.issn | 1439-7617 | |
| dc.identifier.scopus | 2-s2.0-33749644764 | |
| dc.identifier.uri | https://doi.org/10.1007/s10114-005-0762-7 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14391 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Heidelberg | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Distribution | en_US |
| dc.subject | Delta Function | en_US |
| dc.subject | Product Of Distributions | en_US |
| dc.title | On the Non-Commutative Neutrix Product of the Distributions X<sup>λ</Sup>+ and X<sup>μ</Sup>+ | en_US |
| dc.title | On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu) | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Tas, Kenan/0000-0001-8173-453X | |
| gdc.author.scopusid | 7402131987 | |
| gdc.author.scopusid | 9279157700 | |
| gdc.author.wosid | Tas, Kenan/D-8441-2011 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England; Cankaya Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.endpage | 1644 | en_US |
| gdc.description.issue | 6 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 1639 | en_US |
| gdc.description.volume | 22 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2059879453 | |
| gdc.identifier.wos | WOS:000241129200005 | |
| gdc.openalex.fwci | 1.38986482 | |
| gdc.openalex.normalizedpercentile | 0.77 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 3 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |