Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional Kp Equations

dc.contributor.author Dhiman, Shubham K.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Osman, Mohamed S.
dc.contributor.author Wazwaz, Abdul-Majid
dc.contributor.author Kumar, Sachin
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-04-03T13:34:41Z
dc.date.accessioned 2025-09-18T12:47:22Z
dc.date.available 2024-04-03T13:34:41Z
dc.date.available 2025-09-18T12:47:22Z
dc.date.issued 2022
dc.description Wazwaz, Abdul-Majid/0000-0002-8325-7500; Kumar, Sachin/0000-0003-4451-3206; Osman, M. S./0000-0002-5783-0940 en_US
dc.description.abstract This investigation focuses on two novel Kadomtsev-Petviashvili (KP) equations with time-dependent variable coefficients that describe the nonlinear wave propagation of small-amplitude surface waves in narrow channels or large straits with slowly varying width and depth and non-vanishing vorticity. These two variable coefficients, Kadomtsev-Petviashvili (VCKP) equations in (2+1)-dimensions, are the main extensions of the KP equation. Applying the Lie symmetry technique, we carry out infinitesimal generators, potential vector fields, and various similarity reductions of the considered VCKP equations. These VCKP equations are converted into nonlinear ODEs via two similarity reductions. The closed-form analytic solutions are achieved, including in the shape of distinct complex wave structures of solitons, dark and bright soliton shapes, double W-shaped soliton shapes, multi-peakon shapes, curved-shaped multi-wave solitons, and novel solitary wave solitons. All the obtained solutions are verified and validated by using back substitution to the original equation through Wolfram Mathematica. We analyze the dynamical behaviors of these obtained solutions with some three-dimensional graphics via numerical simulation. The obtained variable coefficient solutions are more relevant and useful for understanding the dynamical structures of nonlinear KP equations and shallow water wave models. en_US
dc.description.publishedMonth 3
dc.description.sponsorship Deanship of Scientific Research at Umm Al-Qura University [22UQU4410172DSR05] en_US
dc.description.sponsorship The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4410172DSR05). en_US
dc.identifier.citation Kumar, Sachin;...et.al. (2022). "Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations", Symmetry, Vol.14, No.3. en_US
dc.identifier.doi 10.3390/sym14030597
dc.identifier.issn 2073-8994
dc.identifier.scopus 2-s2.0-85127307631
dc.identifier.uri https://doi.org/10.3390/sym14030597
dc.identifier.uri https://hdl.handle.net/123456789/11785
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Kp Equations With Variable Coefficients en_US
dc.subject Lie Symmetry Technique en_US
dc.subject Exact Solutions en_US
dc.subject Solitons en_US
dc.title Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional Kp Equations en_US
dc.title Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Wazwaz, Abdul-Majid/0000-0002-8325-7500
gdc.author.id Kumar, Sachin/0000-0003-4451-3206
gdc.author.id Osman, M. S./0000-0002-5783-0940
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57221637503
gdc.author.scopusid 57254187600
gdc.author.scopusid 7005872966
gdc.author.scopusid 55646409100
gdc.author.scopusid 7006540445
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Wazwaz, Abdul-Majid/Act-2110-2022
gdc.author.wosid Kumar, Sachin/Aap-4270-2021
gdc.author.wosid Osman, M. S./E-3084-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kumar, Sachin; Dhiman, Shubham K.] Univ Delhi, Fac Math Sci, Dept Math, Delhi 110007, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Osman, Mohamed S.] Umm Al Qura Univ, Fac Appl Sci, Dept Math, Mecca 21955, Saudi Arabia; [Osman, Mohamed S.] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt; [Wazwaz, Abdul-Majid] St Xavier Univ, Dept Math, Chicago, IL 60655 USA en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4221027911
gdc.identifier.wos WOS:000776414500001
gdc.openalex.fwci 50.76832058
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 84
gdc.plumx.crossrefcites 94
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 99
gdc.scopus.citedcount 98
gdc.wos.citedcount 90
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files