Operational Matrix Approach for Solving the Variable-Order Nonlinear Galilei Invariant Advection-Diffusion Equation
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Alzaidy, J. F. | |
| dc.contributor.author | Hashemizadeh, E. | |
| dc.contributor.author | Zaky, M. A. | |
| dc.date.accessioned | 2019-12-23T14:01:42Z | |
| dc.date.accessioned | 2025-09-18T14:09:32Z | |
| dc.date.available | 2019-12-23T14:01:42Z | |
| dc.date.available | 2025-09-18T14:09:32Z | |
| dc.date.issued | 2018 | |
| dc.description | Zaky, Mahmoud/0000-0002-3376-7238 | en_US |
| dc.description.abstract | In this paper, we investigate numerical solution of the variable-order fractional Galilei advection-diffusion equation with a nonlinear source term. The suggested method is based on the shifted Legendre collocation procedure and a matrix form representation of variable-order Caputo fractional derivative. The main advantage of the proposed method is investigating a global approximation for the spatial and temporal discretizations. This method reduces the problem to a system of algebraic equations, which is easier to solve. The validity and effectiveness of the method are illustrated by an easy-to-follow example. | en_US |
| dc.identifier.citation | Zaky, M. A...et al. (2018). "Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection-diffusion equation", Advances in Difference Equations. | en_US |
| dc.identifier.doi | 10.1186/s13662-018-1561-7 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85044267938 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-018-1561-7 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13423 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer international Publishing Ag | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Variable-Order Derivative | en_US |
| dc.subject | Nonlinear Galilei Invariant Advection-Diffusion Equation | en_US |
| dc.subject | Collocation Method | en_US |
| dc.subject | Legendre Polynomials | en_US |
| dc.title | Operational Matrix Approach for Solving the Variable-Order Nonlinear Galilei Invariant Advection-Diffusion Equation | en_US |
| dc.title | Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection-diffusion equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Zaky, Mahmoud/0000-0002-3376-7238 | |
| gdc.author.scopusid | 56448517900 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57215898395 | |
| gdc.author.scopusid | 36084355100 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Hashemizadeh, Elham/Aao-9183-2021 | |
| gdc.author.wosid | Zaky, Mahmoud/B-2797-2015 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Zaky, M. A.] Natl Res Ctr, Dept Appl Math, Giza, Egypt; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Alzaidy, J. F.] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah, Saudi Arabia; [Hashemizadeh, E.] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2018 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2795091130 | |
| gdc.identifier.wos | WOS:000428472500003 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 17.0 | |
| gdc.oaire.influence | 3.6745877E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Composite material | |
| gdc.oaire.keywords | Matrix (chemical analysis) | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Nonlinear Galilei invariant advection–diffusion equation | |
| gdc.oaire.keywords | Variable (mathematics) | |
| gdc.oaire.keywords | Collocation method | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Time-Fractional Diffusion Equation | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Statistical and Nonlinear Physics | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Invariant (physics) | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Materials science | |
| gdc.oaire.keywords | Physics and Astronomy | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Mathematical physics | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Advection | |
| gdc.oaire.keywords | Legendre polynomials | |
| gdc.oaire.keywords | Thermodynamics | |
| gdc.oaire.keywords | Variable-order derivative | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Rogue Waves in Nonlinear Systems | |
| gdc.oaire.keywords | Algebraic equation | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Finite difference methods for initial value and initial-boundary value problems involving PDEs | |
| gdc.oaire.keywords | nonlinear Galilei invariant advection-diffusion equation | |
| gdc.oaire.keywords | variable-order derivative | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.keywords | collocation method | |
| gdc.oaire.keywords | Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs | |
| gdc.oaire.keywords | Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs | |
| gdc.oaire.popularity | 9.7626E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.45880607 | |
| gdc.openalex.normalizedpercentile | 0.88 | |
| gdc.opencitations.count | 24 | |
| gdc.plumx.crossrefcites | 20 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 28 | |
| gdc.publishedmonth | 3 | |
| gdc.scopus.citedcount | 28 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 20 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
