Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Editura Acad Romane

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

A semi-analytical solution based on a Jacobi-Gauss-Lobatto collocation (J-GL-C) method is proposed and developed for the numerical solution of the spatial variable for two nonlinear coupled Klein-Gordon (KG) partial differential equations. The general Jacobi-Gauss-Lobatto points are used as collocation nodes in this approach. The main characteristic behind the J-GL-C approach is that it reduces such problems to solve a system of ordinary differential equations (SODEs) in time. This system is solved by diagonally-implicit Runge-Kutta-Nystrom scheme. Numerical results show that the proposed algorithm is efficient, accurate, and compare favorably with the analytical solutions.

Description

Abdelkawy, Mohamed/0000-0002-9043-9644; Doha, Eid/0000-0002-7781-6871

Keywords

Nonlinear Coupled Hyperbolic Klein-Gordon Equations, Nonlinear Phenomena, Jacobi Collocation Method, Jacobi-Gauss-Lobatto Quadrature

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Doha, Eid Hassan... et al. (2014). "Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations", Romanian Journal of Physics, Vol. 59, No. 3-4, pp. 247-264.

WoS Q

Q3

Scopus Q

Q3

Source

Volume

59

Issue

3-4

Start Page

247

End Page

264

URI