Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations
dc.authorid | Abdelkawy, Mohamed/0000-0002-9043-9644 | |
dc.authorid | Doha, Eid/0000-0002-7781-6871 | |
dc.authorscopusid | 6602467804 | |
dc.authorscopusid | 14319102000 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56704936300 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Abdelkawy, M/Aeb-7974-2022 | |
dc.authorwosid | Doha, Eid/L-1723-2019 | |
dc.authorwosid | Bhrawy, Ali/D-4745-2012 | |
dc.contributor.author | Doha, E. H. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Bhrawy, A. H. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.author | Abdelkawy, M. A. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-12-10T08:58:44Z | |
dc.date.available | 2020-12-10T08:58:44Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia; [Bhrawy, A. H.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf 62511, Egypt; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, RO-077125 Magurele, Romania | en_US |
dc.description | Abdelkawy, Mohamed/0000-0002-9043-9644; Doha, Eid/0000-0002-7781-6871 | en_US |
dc.description.abstract | A semi-analytical solution based on a Jacobi-Gauss-Lobatto collocation (J-GL-C) method is proposed and developed for the numerical solution of the spatial variable for two nonlinear coupled Klein-Gordon (KG) partial differential equations. The general Jacobi-Gauss-Lobatto points are used as collocation nodes in this approach. The main characteristic behind the J-GL-C approach is that it reduces such problems to solve a system of ordinary differential equations (SODEs) in time. This system is solved by diagonally-implicit Runge-Kutta-Nystrom scheme. Numerical results show that the proposed algorithm is efficient, accurate, and compare favorably with the analytical solutions. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Doha, Eid Hassan... et al. (2014). "Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations", Romanian Journal of Physics, Vol. 59, No. 3-4, pp. 247-264. | en_US |
dc.identifier.endpage | 264 | en_US |
dc.identifier.issn | 1221-146X | |
dc.identifier.issue | 3-4 | en_US |
dc.identifier.scopus | 2-s2.0-84899136681 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 247 | en_US |
dc.identifier.volume | 59 | en_US |
dc.identifier.wos | WOS:000335206000007 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Editura Acad Romane | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 41 | |
dc.subject | Nonlinear Coupled Hyperbolic Klein-Gordon Equations | en_US |
dc.subject | Nonlinear Phenomena | en_US |
dc.subject | Jacobi Collocation Method | en_US |
dc.subject | Jacobi-Gauss-Lobatto Quadrature | en_US |
dc.title | Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations | tr_TR |
dc.title | Numerical Treatment of Coupled Nonlinear Hyperbolic Klein-Gordon Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 36 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: