Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations

dc.authorid Abdelkawy, Mohamed/0000-0002-9043-9644
dc.authorid Doha, Eid/0000-0002-7781-6871
dc.authorscopusid 6602467804
dc.authorscopusid 14319102000
dc.authorscopusid 7005872966
dc.authorscopusid 56704936300
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Abdelkawy, M/Aeb-7974-2022
dc.authorwosid Doha, Eid/L-1723-2019
dc.authorwosid Bhrawy, Ali/D-4745-2012
dc.contributor.author Doha, E. H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, D.
dc.contributor.author Abdelkawy, M. A.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-12-10T08:58:44Z
dc.date.available 2020-12-10T08:58:44Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia; [Bhrawy, A. H.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf 62511, Egypt; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, RO-077125 Magurele, Romania en_US
dc.description Abdelkawy, Mohamed/0000-0002-9043-9644; Doha, Eid/0000-0002-7781-6871 en_US
dc.description.abstract A semi-analytical solution based on a Jacobi-Gauss-Lobatto collocation (J-GL-C) method is proposed and developed for the numerical solution of the spatial variable for two nonlinear coupled Klein-Gordon (KG) partial differential equations. The general Jacobi-Gauss-Lobatto points are used as collocation nodes in this approach. The main characteristic behind the J-GL-C approach is that it reduces such problems to solve a system of ordinary differential equations (SODEs) in time. This system is solved by diagonally-implicit Runge-Kutta-Nystrom scheme. Numerical results show that the proposed algorithm is efficient, accurate, and compare favorably with the analytical solutions. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Doha, Eid Hassan... et al. (2014). "Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations", Romanian Journal of Physics, Vol. 59, No. 3-4, pp. 247-264. en_US
dc.identifier.endpage 264 en_US
dc.identifier.issn 1221-146X
dc.identifier.issue 3-4 en_US
dc.identifier.scopus 2-s2.0-84899136681
dc.identifier.scopusquality Q3
dc.identifier.startpage 247 en_US
dc.identifier.volume 59 en_US
dc.identifier.wos WOS:000335206000007
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 41
dc.subject Nonlinear Coupled Hyperbolic Klein-Gordon Equations en_US
dc.subject Nonlinear Phenomena en_US
dc.subject Jacobi Collocation Method en_US
dc.subject Jacobi-Gauss-Lobatto Quadrature en_US
dc.title Numerical treatment of coupled nonlinear hyperbolic Klein-Gordon equations tr_TR
dc.title Numerical Treatment of Coupled Nonlinear Hyperbolic Klein-Gordon Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 36
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: