Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Improvement of General Inquirer Features with Quantity Analysis

dc.contributor.authorKaradeniz, Talha
dc.contributor.authorDoğdu, Erdoğan
dc.date.accessioned2020-04-13T13:36:59Z
dc.date.available2020-04-13T13:36:59Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractGeneral Inquirer is a word-affect association vocabulary having 11896 entries. Ranging from rectitude to expressiveness, it comes with a flavor of categories. Despite the extensive content, a mapping from "To be or not to be." to "How much?" can be beneficial for word representation. In this work, we apply a method of window based analysis to obtain real valued General Inquirer attributes. Sentence Completion task is chosen to calculate the effectiveness of the operation. After whitening post-process, total cosine similarity convention is followed to concentrate on embedding improvement. Results indicate that our quantity focused variant is considerable.en_US
dc.identifier.citationDogdu, Erdogan; Karadeniz, Talha, "Improvement of General Inquirer Features with Quantity Analysis", 2018 IEEE International Conference on Big Data (Big Data), pp. 2228-2231, (2018).en_US
dc.identifier.endpage2231en_US
dc.identifier.issn2639-1589
dc.identifier.startpage2228en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/3095
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 IEEE International Conference On Big Data (Big Data)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSentence Completionen_US
dc.subjectWord Embeddingen_US
dc.titleImprovement of General Inquirer Features with Quantity Analysistr_TR
dc.titleImprovement of General Inquirer Features With Quantity Analysisen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery7269fd52-d99c-41aa-863d-cb899d6b3ab7

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: