Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analysis of Differential Equations Involving Caputo-Fabrizio Fractional Operator and Its Applications To Reaction-Diffusion Equations

dc.contributor.author Tassaddiq, Asifa
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Shaikh, Amjad
dc.date.accessioned 2020-01-03T12:09:37Z
dc.date.accessioned 2025-09-18T15:44:46Z
dc.date.available 2020-01-03T12:09:37Z
dc.date.available 2025-09-18T15:44:46Z
dc.date.issued 2019
dc.description Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Tassaddiq, Asifa/0000-0002-6165-8055 en_US
dc.description.abstract This manuscript deals with fractional differential equations including Caputo-Fabrizio differential operator. The conditions for existence and uniqueness of solutions of fractional initial value problems is established using fixed point theorem and contraction principle, respectively. As an application, the iterative Laplace transform method (ILTM) is used to get an approximate solutions for nonlinear fractional reaction-diffusion equations, namely the Fitzhugh-Nagumo equation and the Fisher equation in the Caputo-Fabrizio sense. The obtained approximate solutions are compared with other available solutions from existing methods by using graphical representations and numerical computations. The results reveal that the proposed method is most suitable in terms of computational cost efficiency, and accuracy which can be applied to find solutions of nonlinear fractional reaction-diffusion equations. en_US
dc.identifier.citation Shaikh, Amjad...et al. (2019). Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations", Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-019-2115-3
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85065643811
dc.identifier.uri https://doi.org/10.1186/s13662-019-2115-3
dc.identifier.uri https://hdl.handle.net/20.500.12416/14393
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo-Fabrizio Derivative Operator en_US
dc.subject Existence And Uniqueness en_US
dc.subject Fixed Point Theorem en_US
dc.subject Iterative Laplace Transform Method en_US
dc.subject Approximate Solutions en_US
dc.title Analysis of Differential Equations Involving Caputo-Fabrizio Fractional Operator and Its Applications To Reaction-Diffusion Equations en_US
dc.title Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
gdc.author.id Tassaddiq, Asifa/0000-0002-6165-8055
gdc.author.scopusid 57209219325
gdc.author.scopusid 37056746000
gdc.author.scopusid 56715663200
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Tassaddiq, Asifa/W-6746-2019
gdc.author.wosid Nisar, Prof. Kottakkaran Sooppy/F-7559-2015
gdc.author.wosid Tassaddiq, Asifa/D-2860-2019
gdc.author.yokid 56389
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Shaikh, Amjad] AKIs Poona Coll Arts Sci & Commerce, Dept Math, Pune, Maharashtra, India; [Tassaddiq, Asifa] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah, Saudi Arabia; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawasir, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2019
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2944615032
gdc.identifier.wos WOS:000467531300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 73.0
gdc.oaire.influence 8.440093E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional Differential Equations
gdc.oaire.keywords Laplace transform
gdc.oaire.keywords Approximate solutions
gdc.oaire.keywords Existence and uniqueness
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Quantum mechanics
gdc.oaire.keywords Differential equation
gdc.oaire.keywords Health Sciences
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Functional Differential Equations
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Numerical partial differential equations
gdc.oaire.keywords Fixed point theorem
gdc.oaire.keywords Time-Fractional Diffusion Equation
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Physics
gdc.oaire.keywords Public Health, Environmental and Occupational Health
gdc.oaire.keywords Fractional calculus
gdc.oaire.keywords Partial differential equation
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Iterative Laplace transform method
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Reaction–diffusion system
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Disease Transmission and Population Dynamics
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Caputo–Fabrizio derivative operator
gdc.oaire.keywords Nonlinear system
gdc.oaire.keywords Medicine
gdc.oaire.keywords Fractional Calculus
gdc.oaire.keywords Uniqueness
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Ordinary differential equation
gdc.oaire.keywords fixed point theorem
gdc.oaire.keywords approximate solutions
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords iterative Laplace transform method
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords Caputo-fabrizio derivative operator
gdc.oaire.keywords existence and uniqueness
gdc.oaire.popularity 6.981758E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 11.48061497
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 94
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 28
gdc.plumx.scopuscites 139
gdc.publishedmonth 5
gdc.scopus.citedcount 138
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 114
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files