Analysis of Differential Equations Involving Caputo-Fabrizio Fractional Operator and Its Applications To Reaction-Diffusion Equations
| dc.contributor.author | Tassaddiq, Asifa | |
| dc.contributor.author | Nisar, Kottakkaran Sooppy | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Shaikh, Amjad | |
| dc.date.accessioned | 2020-01-03T12:09:37Z | |
| dc.date.accessioned | 2025-09-18T15:44:46Z | |
| dc.date.available | 2020-01-03T12:09:37Z | |
| dc.date.available | 2025-09-18T15:44:46Z | |
| dc.date.issued | 2019 | |
| dc.description | Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Tassaddiq, Asifa/0000-0002-6165-8055 | en_US |
| dc.description.abstract | This manuscript deals with fractional differential equations including Caputo-Fabrizio differential operator. The conditions for existence and uniqueness of solutions of fractional initial value problems is established using fixed point theorem and contraction principle, respectively. As an application, the iterative Laplace transform method (ILTM) is used to get an approximate solutions for nonlinear fractional reaction-diffusion equations, namely the Fitzhugh-Nagumo equation and the Fisher equation in the Caputo-Fabrizio sense. The obtained approximate solutions are compared with other available solutions from existing methods by using graphical representations and numerical computations. The results reveal that the proposed method is most suitable in terms of computational cost efficiency, and accuracy which can be applied to find solutions of nonlinear fractional reaction-diffusion equations. | en_US |
| dc.identifier.citation | Shaikh, Amjad...et al. (2019). Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations", Advances in Difference Equations. | en_US |
| dc.identifier.doi | 10.1186/s13662-019-2115-3 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85065643811 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-019-2115-3 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14393 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Caputo-Fabrizio Derivative Operator | en_US |
| dc.subject | Existence And Uniqueness | en_US |
| dc.subject | Fixed Point Theorem | en_US |
| dc.subject | Iterative Laplace Transform Method | en_US |
| dc.subject | Approximate Solutions | en_US |
| dc.title | Analysis of Differential Equations Involving Caputo-Fabrizio Fractional Operator and Its Applications To Reaction-Diffusion Equations | en_US |
| dc.title | Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320 | |
| gdc.author.id | Tassaddiq, Asifa/0000-0002-6165-8055 | |
| gdc.author.scopusid | 57209219325 | |
| gdc.author.scopusid | 37056746000 | |
| gdc.author.scopusid | 56715663200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Tassaddiq, Asifa/W-6746-2019 | |
| gdc.author.wosid | Nisar, Prof. Kottakkaran Sooppy/F-7559-2015 | |
| gdc.author.wosid | Tassaddiq, Asifa/D-2860-2019 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Shaikh, Amjad] AKIs Poona Coll Arts Sci & Commerce, Dept Math, Pune, Maharashtra, India; [Tassaddiq, Asifa] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah, Saudi Arabia; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawasir, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2019 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2944615032 | |
| gdc.identifier.wos | WOS:000467531300001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 73.0 | |
| gdc.oaire.influence | 8.440093E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Laplace transform | |
| gdc.oaire.keywords | Approximate solutions | |
| gdc.oaire.keywords | Existence and uniqueness | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Health Sciences | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Functional Differential Equations | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical partial differential equations | |
| gdc.oaire.keywords | Fixed point theorem | |
| gdc.oaire.keywords | Time-Fractional Diffusion Equation | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Public Health, Environmental and Occupational Health | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Iterative Laplace transform method | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Reaction–diffusion system | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Disease Transmission and Population Dynamics | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Caputo–Fabrizio derivative operator | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Medicine | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Uniqueness | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | fixed point theorem | |
| gdc.oaire.keywords | approximate solutions | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | iterative Laplace transform method | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.keywords | Caputo-fabrizio derivative operator | |
| gdc.oaire.keywords | existence and uniqueness | |
| gdc.oaire.popularity | 6.981758E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 11.48061497 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 94 | |
| gdc.plumx.crossrefcites | 9 | |
| gdc.plumx.mendeley | 28 | |
| gdc.plumx.scopuscites | 139 | |
| gdc.publishedmonth | 5 | |
| gdc.scopus.citedcount | 138 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 114 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
