Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Determination of complete melting and surface premelting pointsof silver nanoparticles by molecular dynamics simulation

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

A molecular dynamics simulation based on the embedded-atom method was conducted at different sizes of single-crystal Ag nanoparticles (NPs) with diameters of 4 to 20 nm to find complete melting and surface premelting points. Unlike the previous theoretical models, our model can predict both complete melting and surface premelting points for a wider size range of NPs. Programmed heating at an equal rate was applied to all sizes of NPs. Melting kinetics showed three different trends that are, respectively, associated with NPs in the size ranges of 4 to 7 rim, 8 to 10 nm, and 12 to 20 nm. NPs in the first range melted at a single temperature without passing through a surface premelting stage. Melting of the second range started by forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid layer of 1.8 nm thickness that also subsequently expanded to the core with increasing temperature and completed the melting process. For particles in the third range, the 1.8 nm liquid layer was formed once the thickness of the quasi-liquid layer reached S rim. The liquid layer expanded to the core and formed thicker stable liquid layers as the temperature increased toward the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed a linear relationship with temperature.

Description

Keywords

Embedded-Atom-Method, Cubic Metals, Cu, Clusters, Ag, Temperature, Transition, Particles, Au, Mechanisms

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Alarifi, H. A...et.al., "Determination of complete melting and surface premelting pointsof silver nanoparticles by molecular dynamics simulation" Journal of Physical Chemistry C, Vol.117, No.23, pp.12289-12298, (2013).

WoS Q

Scopus Q

Source

Journal of Physical Chemistry C

Volume

117

Issue

23

Start Page

12289

End Page

12298