Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Hybrid Framework for Matching Printing Design Files to Product Photos

dc.contributor.authorAkagunduz, Erdem
dc.contributor.authorKaplan, Alper
dc.contributor.authorID233834tr_TR
dc.date.accessioned2021-06-11T10:36:11Z
dc.date.available2021-06-11T10:36:11Z
dc.date.issued2020
dc.departmentÇankaya Universityen_US
dc.department-tempÇankaya Üni̇versi̇tesi̇,Yedi̇tepe Üni̇versi̇tesi̇en_US
dc.description.abstractWe propose a real-time image matching framework, which is hybrid in the sense that it uses both hand - crafted features and deep features obtained from a well -tuned deep convolutional network. The matching problem, which we concentrate on, is specific to a certain application, that is, printing design to product photo matching. Printing designs are any kind of template image files, created using a design tool, thus are perfect image signals. For this purpose, we create an image set that includes printing design and corresponding product photo pairs with collaboration of an actual printing facility. Using this image set, we benchmark various hand-crafted (SIFT, SURF, GIST, HoG) and deep features for matching performance. Various segmentation algorithms including deep learning based segmentation methods are applied to select feature regions. Results show that SIFT features selected from deep segmented regions achieves up to 96% product photo to design file matching success in our dataset. We propose a framework in which deep learning is utilized with highest contribution, but without disabling real-time operation using an ordinary desktop computer.en_US
dc.identifier.citationKaplan, Alper; Akagündüz, Erdem (2020). "A Hybrid Framework for Matching Printing Design Files to Product Photos", Balkan Journal of Electrical and Computer Engineering, Vol. 8, No. 2, pp. 170-180.en_US
dc.identifier.doi10.17694/bajece.677326
dc.identifier.endpage180en_US
dc.identifier.issn2147-284X
dc.identifier.issue2en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage170en_US
dc.identifier.trdizinid468356
dc.identifier.urihttps://doi.org/10.17694/bajece.677326
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/468356/a-hybrid-framework-for-matching-printing-design-files-to-product-photos
dc.identifier.volume8en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.relation.ispartofBalkan Journal of Electrical and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYazılım Mühendisliğien_US
dc.subjectGörüntüleme Bilimi Ve Fotoğraf Teknolojisien_US
dc.titleA Hybrid Framework for Matching Printing Design Files to Product Photostr_TR
dc.titleA Hybrid Framework for Matching Printing Design Files To Product Photosen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: