Fractional differential equations and their applications

dc.contributor.authorAvkar, Tansel
dc.contributor.departmentÇankaya Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Bilgisayar Bölümütr_TR
dc.date.accessioned2016-06-03T11:48:13Z
dc.date.available2016-06-03T11:48:13Z
dc.date.issued2004
dc.description.abstractThe Laplace transform method for solving fractional differential equations is pre sented. The fractional diffusion and fractional Schrödinger equations together with their properties are investigated. The Lagrangians linear in velocities are analyzed using the fractional calculus, and the fractional Euler-Lagrange equations are derivedtr_TR
dc.description.abstractKesirsel diferansiyel denklemleri çözmek için Laplace dönüşüm metodu sunulmak tadır. Kesirsel difüzyon ve kesirsel Schrödinger denklemleri özellikleri ile beraber araştırılmaktadır. Kesirsel kalkulus yardımıyla doğrusal hızlı Lagrangianlar analiz edilmekte ve kesirsel Euler-Lagrange denklemleri elde edilmektedirtr_TR
dc.identifier.citationAVKAR, T. (2004). Fractional differential equations and their applications. Yayımlanmamış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsütr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1022
dc.language.isoengtr_TR
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFractional Derivativestr_TR
dc.subjectFractional Integraltr_TR
dc.subjectFractional Diffusion Equationtr_TR
dc.subjectFractional Schrödinger Equationtr_TR
dc.subjectFractional Euler-Lagrange Equationstr_TR
dc.subjectKesirsel Türevtr_TR
dc.subjectKesirsel İntegraltr_TR
dc.subjectKesirsel Difüzyon Denklemitr_TR
dc.subjectKesirsel Schrödinger Denklemitr_TR
dc.subjectKesirsel Euler-Lagrange Denklemleritr_TR
dc.titleFractional differential equations and their applicationstr_TR
dc.title.alternativeKesirsel diferansiyel denklemler ve uygulamalarıtr_TR
dc.typemasterThesistr_TR

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: