Einstein field equations within local fractional calculus
Date
2015
Authors
Golmankhaneh, Alireza K.
Yang, Xiao-Jun
Baleanu, Dumitru
Journal Title
Journal ISSN
Volume Title
Publisher
Editura Acad Romane
Abstract
In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented
Description
Keywords
Local Fractional Christoffel Index, Local Fractional Riemann-Christoffel Tensor, Local Fractional Ricci Tensor, Local Fractional Einstein Field
Citation
Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31.