Einstein field equations within local fractional calculus

Thumbnail Image

Date

2015

Authors

Golmankhaneh, Alireza K.
Yang, Xiao-Jun
Baleanu, Dumitru

Journal Title

Journal ISSN

Volume Title

Publisher

Editura Acad Romane

Abstract

In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented

Description

Keywords

Local Fractional Christoffel Index, Local Fractional Riemann-Christoffel Tensor, Local Fractional Ricci Tensor, Local Fractional Einstein Field

Citation

Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31.