Einstein field equations within local fractional calculus
dc.contributor.author | Golmankhaneh, Alireza K. | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | tr_TR |
dc.date.accessioned | 2017-04-19T11:27:36Z | |
dc.date.available | 2017-04-19T11:27:36Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented | tr_TR |
dc.identifier.citation | Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31. | tr_TR |
dc.identifier.endpage | 31 | tr_TR |
dc.identifier.issn | 1221-146X | |
dc.identifier.issue | 1-2 | tr_TR |
dc.identifier.startpage | 22 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1542 | |
dc.identifier.volume | 60 | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Editura Acad Romane | tr_TR |
dc.relation.journal | Romanian Journal of Physics | tr_TR |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | Local Fractional Christoffel Index | tr_TR |
dc.subject | Local Fractional Riemann-Christoffel Tensor | tr_TR |
dc.subject | Local Fractional Ricci Tensor | tr_TR |
dc.subject | Local Fractional Einstein Field | tr_TR |
dc.title | Einstein field equations within local fractional calculus | tr_TR |
dc.type | article | tr_TR |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Baleanu, Dumitru (1).pdf
- Size:
- 168.46 KB
- Format:
- Adobe Portable Document Format
- Description:
- Yayıncı sürümü
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: