Einstein field equations within local fractional calculus

dc.contributor.authorGolmankhaneh, Alireza K.
dc.contributor.authorYang, Xiao-Jun
dc.contributor.authorBaleanu, Dumitru
dc.contributor.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümütr_TR
dc.date.accessioned2017-04-19T11:27:36Z
dc.date.available2017-04-19T11:27:36Z
dc.date.issued2015
dc.description.abstractIn this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presentedtr_TR
dc.identifier.citationGolmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31.tr_TR
dc.identifier.endpage31tr_TR
dc.identifier.issn1221-146X
dc.identifier.issue1-2tr_TR
dc.identifier.startpage22tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1542
dc.identifier.volume60tr_TR
dc.language.isoengtr_TR
dc.publisherEditura Acad Romanetr_TR
dc.relation.journalRomanian Journal of Physicstr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectLocal Fractional Christoffel Indextr_TR
dc.subjectLocal Fractional Riemann-Christoffel Tensortr_TR
dc.subjectLocal Fractional Ricci Tensortr_TR
dc.subjectLocal Fractional Einstein Fieldtr_TR
dc.titleEinstein field equations within local fractional calculustr_TR
dc.typearticletr_TR

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru (1).pdf
Size:
168.46 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: