Fizik Bilim Dalı
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/1819
Browse
Browsing Fizik Bilim Dalı by Author "Guler, I."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Optical and photoelectrical properties of TlInSSe layered single crystals(Elsevier Gmbh, 2018) Guler, I.; Güler, İpek; Gasanly, N.; 101531Optical and electrical properties of TlInSSe layered single crystals have been studied by means of transmission, reflection and photoconductivity measurements. Transmission and reflection experiments have been carried out from 540 to 1000 nm at room temperature. Derivative analysis was applied to both transmission and reflection spectra and indirect band gap energy was found as 2.06 eV. Photoconductivity measurements have been performed in the temperature range from 245 to 300 K and in the voltage range from 10 to 80 V. From the temperature-dependent photoconductivity measurements, the observed single peak shifted to higher wavelengths with increase of temperature. The increase of photoconductivity with temperature is due to the increase in the mobility of photocarriers that can be explained by Bube model. From X112 method, room temperature indirect band gap of the crystal was also found as 2.06 eV. From voltage-dependent photoconductivity measurements, the peak maximum increased linearly with increase of voltage because of increase of the mobility of charge carriers. Dark current-voltage characteristic of TlInSSe crystal showed the ohmic behavior that means space charge limited current did not exist in the crystal. From the photocurrent with different illumination intensity analysis, the supralinear photoconductivity associated with the two center model was found. (C) 2017 Elsevier GmbH. All rights reserved.Article Structural and Optical Properties of Ga2Se3 Crystals by Spectroscopic Ellipsometry(Springer, 2019) Guler, I.; Güler, İpek; Isik, M.; Gasanly, N. M.; Gasanova, L. G.; Babayeva, R. F.; 101531Optical and crystalline structure properties of Ga2Se3 crystals were analyzed utilizing ellipsometry and x-ray diffraction (XRD) experiments, respectively. Components of the complex dielectric function (epsilon=epsilon(1)+i epsilon(2)) and refractive index (N=n+ik) of Ga2Se3 crystals were spectrally plotted from ellipsometric measurements conducted from 1.2eV to 6.2eV at 300K. From the analyses of second-energy derivatives of epsilon(1) and epsilon(2), interband transition energies (critical points) were determined. Absorption coefficient-photon energy dependency allowed us to achieve a band gap energy of 2.02eV. Wemple and DiDomenico single effective oscillator and Spitzer-Fan models were accomplished and various optical parameters of the crystal were reported in the present work.Article Study of vibrational modes in (Ga2S3)(x) - (Ga2Se3)(1-x) mixed crystals by Raman and infrared reflection measurements(Elsevier, 2019) Isik, M.; Güler, İpek; Guler, I.; Gasanly, N. M.; 101531Raman and infrared (IR) reflection characteristics were investigated in the frequency region of 100-450 cm(-1) for (Ga2S3)(x) - (Ga2Se3)(1-x) mixed crystals for compositions of x increasing from 0.0 to 1.0 by intervals of 0.25 obtained by Bridgman crystal growth technique. In the Raman spectra of these crystals four dominant peak features were observed while two bands were detected in the IR spectra of interest samples. Kramers-Kronig dispersion relations applied to IR spectra presented the frequencies of transverse optical modes. The compositional dependencies of revealed Raman- and IR-active mode frequencies on (Ga2S3)(x) - (Ga2Se3)(1-x) crystals were established. One-mode behavior was displayed from indicated dependencies.Article Temperature and Excitation Intensity Tuned Photoluminescence In Ga0.75In0.25Se Crystals(Elsevier Science Bv, 2013) Isik, M.; Guler, I.; Gasanly, N. M.; 101531Photoluminescence (PL) spectra of Ga0.75In0.25Se layered single crystals have been studied in the wavelength range of 580-670 nm and temperature range of 7-59 K. Two PL emission bands centered at 613 nm (2.02 eV, A-band) and 623 nm (1.99 eV, B-band) were revealed at T = 7K. The excitation laser intensity dependence of the emission bands have been studied in the 0.06-1.40 W cm(-2) range. Radiative transitions from shallow donor levels located at E-A = 0.11 and E-B = 0.15 eV below the bottom of conduction band to single shallow acceptor level located at 0.01 eV above the valence band are suggested to be responsible for the observed A- and B-bands. A simple model was proposed to interpret the recombination processes in Ga0.75In0.25Se single crystals. (c) 2012 Elsevier B.V. All rights reserved.