Browsing by Author "Aradag, Selin"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 2Critical decision making for rehabilitation of hydroelectric power plants(Taylor & Francis inc, 2023) Celebioglu, Kutay; Ayli, Ece; Ulucak, Oguzhan; Aradag, Selin; Westerman, Jerry; 265836; Makine MühendisliğiDue to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant's current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m(3)/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m(3)/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.Article Citation - WoS: 2Citation - Scopus: 1Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine(Sage Publications Ltd, 2024) Celebioglu, Kutay; Ayli, Ece; Cetinturk, Huseyin; Tascioglu, Yigit; Aradag, Selin; 265836; Makine MühendisliğiIn this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R2 value of 0.99631 was achieved with the appropriate ANN architecture.Article Citation - WoS: 1Citation - Scopus: 1Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods(Sage Publications Ltd, 2024) Guzey, Kaan; Ayli, Ulku Ece; Kocak, Eyup; Aradag, Selin; 265836; 283455; Makine MühendisliğiThis article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (& lambda;) of the serration are varied between 1.25 and 2.5, 20 < & lambda; < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 x 10(5). The angle of attack for each configuration is changed between 4 & DEG; and 16 & DEG;. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8 & DEG;, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12 & DEG; (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.Article Machine Learning-Based Efficiency Prediction of Francis Type Hydraulic Turbines Through Comprehensive Performance Testing(Sage Publications Ltd, 2025) Besni, Ferdi; Buyuksolak, Fevzi; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; Tascioglu, YigitIn this study, the rehabilitation works carried out for the KEPEZ HPP, which has been in operation for over 50 years in Antalya, Turkey, is discussed. Within this scope, the existing turbine components are optimized using the CFD method, and a design that provides higher performance at the required flow rate and head is obtained. Analyses are performed using numerical methods to examine the behavior of the new turbine at different flow rates and heads, and a hill chart is created. In the second stage, model tests are carried out at the TOBB ETU HYDRO Water Turbine Design and Test Center in accordance with IEC60193 standards. Different ML methods are examined for their ability to predict turbine performance, following the development of the hydrid CFD-Experimental methodology. According to the authors knowledge, there is no study in the literature that combines experimental, numerical, and ML methods for turbines, and ML methods have not been applied before for Francis-type turbine performance prediction. The outcomes of the study contribute to the advancement of turbine design and optimization processes, offering valuable insights for the successful implementation of rehabilitation projects in the hydropower sector.Article Citation - WoS: 3Citation - Scopus: 2Mitigating Cavitation Effects on Francis Turbine Performance: a Two-Phase Flow Analysis(Pergamon-elsevier Science Ltd, 2025) Altintas, Burak; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; Makine MühendisliğiDue to their ability to operate over a wide range of flow rates and generate high power, Francis turbines are the most widely used of hydroturbine type. Hydraulic turbines, are designed for specific flow and head conditions tailored to site conditions. However, Francis turbines can also be operated outside of design conditions due to varying flow and head values. Operation outside of design conditions can lead to cavitation. In this study, singlephase steady-state an alyses were conducted initially to examine cavitation in detail, followed by two-phase transient analyses. The results obtained from these analyses were compared to determine the cavitation characteristics of the designed turbine. The steady-state simulation results indicate the occurrence of cavitation, including traveling bubble and draft tube cavitation, under overload operating conditions. However, these cavitation characteristics are not observed in the two-phase transient simulation results under the same operating conditions. Additionally, the turbine efficiency is predicted to be higher in the transient simulation results. This is attributed to the frozen rotor interface used in the steady-state simulations, which over predicts flow irregularities. The reduced flow irregularities in the transient results have resulted in lower cavitation and losses, leading to higher predicted turbine efficiency.Article Rehabilitation of Francis Turbines of Power Plants With Computational Methods(2018) Aylı, Ece; Celebioglu, Kutay; Altıntas, Burak; Aradag, Selin; Makine MühendisliğiRehabilitation of existing hydroelectric power plants (HEPP) by redesigning the hydraulicturbines is usually more elaborate than designing a tailor-made turbine for a new plant.Some of the parts are buried and the space is limited with the size of the old turbine; therefore,this increases the number of constraints imposed on the design. This article presents aComputational Fluid Dynamics (CFD) based rehabilitation procedure involving the stateof the art redesign of the turbine of a hydroelectric power plant for better performance atdesign and off-design conditions of several head and flow rates. Runner and guide vanes ofthe Francis turbine are designed per the design head and flow rates available for the turbineat the site. The simulations for the designed parts are performed both separately and usingall turbine parts as full turbine analyses. Both the design and off-design conditions aresimulated for the newly designed and existing turbines for comparison purposes. Cavitationperformance of the new design is also determined. The proposed methodology is applicableto any Francis type turbine and any HEPP that needs rehabilitation.