Browsing by Author "Salehi, Saeid"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article A k-Dimensional System of Fractional Finite Difference Equations(2014) Baleanu, Dumitru; Rezapour, Shahram; Salehi, Saeid; 56389; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiWe investigate the existence of solutions for a k-dimensional system of fractional finite difference equations by using the Kranoselskii's fixed point theorem. We present an example in order to illustrate our results.Article Citation - WoS: 38Citation - Scopus: 42The Existence of Solutions for Some Fractional Finite Difference Equations Via Sum Boundary Conditions(Springer, 2014) Baleanu, Dumitru; Rezapour, Shahram; Salehi, Saeid; Agarwal, Ravi P.; 56389; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this manuscript we investigate the existence of the fractional finite difference equation (FFDE) Delta(mu)(mu-2)x(t) = g(t + mu - 1, x(t + mu - 1), Delta x(t + mu - 1)) via the boundary condition x(mu - 2) = 0 and the sum boundary condition x(mu + b + 1) = Sigma(alpha)(k=mu-1) x(k) for order 1 < mu <= 2, where g : N-mu-1(mu+b+1) x R x R -> R, alpha is an element of N-mu-1(mu+b), and t is an element of N-0(b+2). Along the same lines, we discuss the existence of the solutions for the following FFDE: Delta(mu)(mu-3)x(t) = g(t + mu - 2, x(t + mu - 2)) via the boundary conditions x(mu - 3) = 0 and x(mu + b + 1) = 0 and the sum boundary condition x(alpha) = Sigma(beta)(k=gamma)x(k) for order 2 < mu <= 3, where g : N-mu-2(mu+b+1) x R -> R, b is an element of N-0, t is an element of N-0(b+3), and alpha, beta,gamma N-mu-2(mu+b) with gamma < beta < alpha.Article Citation - WoS: 5A Fractional Finite Difference Inclusion(Eudoxus Press, Llc, 2016) Baleanu, Dumitru; Baleanu, Dumitru; Rezapour, Shahram; Salehi, Saeid; Matematik; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this manuscript we investigated the fractional finite difference inclusion Delta(mu)(mu-2) x(t) is an element of F(t, x(t), Delta x(t)) via the boundary conditions Delta x(b + mu) = A and x(mu - 2) = B, where 1 <= 2, A,B is an element of R and F :N-mu-2(b+mu+2) x R -> 2(R) is a compact valued multifunction.Article Citation - WoS: 6Citation - Scopus: 13A K-Dimensional System of Fractional Finite Difference Equations(Hindawi Ltd, 2014) Rezapour, Shahram; Salehi, Saeid; Baleanu, Dumitru; 56389; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiWe investigate the existence of solutions for a k-dimensional system of fractional finite difference equations by using the Kranoselskii's fixed point theorem. We present an example in order to illustrate our results.Article Citation - WoS: 5Citation - Scopus: 7On Some Self-Adjoint Fractional Finite Difference Equations(Eudoxus Press, Llc, 2015) Baleanu, Dumitru; Baleanu, Dumitru; Rezapour, Shahram; Salehi, Saeid; 56389; Matematik; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiRecently, the existence of solution for the fractional self-adjoint equation Delta(nu)(nu-1) (p Delta y)(t) = h(t) for order 0 < nu <= 1 was reported in [9]. In this paper, we investigated the self-adjoint fractional finite difference equation Delta(nu)(nu-2)(p Delta u(t) = j(t,p(t+nu - 2)) via the boundary conditions y(nu - 2) = 0 , such that Delta y(nu - 2) = 0 and Delta y(nu+b) = 0. Also, we analyzed the self-adjoing fractional finite difference equation Delta(nu()(nu-2)p Delta(2)y)(t) = j(t,[(t+nu - 2)Delta(2)y(t+nu-3)) via the boundary conditions y(nu - 2) = 0, Delta y(nu - 2) = 0, Delta(2)y(nu - 2) = 0 and Delta 2y(nu+b) = 0. Finally, we conclude a result about the existence of solution for the general equation Delta(nu()(nu-2)p Delta(m)y)(t) = h(t,p(t+nu - m - 1)Delta(m)y(t+nu - m - 1)) via the boundary conditions y(nu - 2) = Delta y(nu - 2) = Delta(2)y(nu - 2) = center dot center dot center dot Delta(m)y(nu+b) = 0 for oder 1 < nu <= 2.Article Citation - WoS: 7Citation - Scopus: 12On the Existence of Solutions for a Fractional Finite Difference Inclusion Via Three Points Boundary Conditions(Springer, 2015) Rezapour, Shahram; Salehi, Saeid; Baleanu, Dumitru; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this paper, we discussed the existence of solutions for the fractional finite difference inclusion Delta(nu)x(t) is an element of F(t, x(t), Delta x(t), Delta(2)x(t)) via the boundary value conditions xi x(nu - 3) + beta Delta x(nu - 3) = 0, x(eta) = 0, and gamma x(b + nu) + delta Delta x(b + nu) = 0, where eta is an element of N-nu-2(b+nu-1), 2 < nu < 3, and F : N-nu-3(b+nu+1) x R x R x R -> 2(R) is a compact valued multifunction.
