Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Some Self-Adjoint Fractional Finite Difference Equations

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Eudoxus Press, Llc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Recently, the existence of solution for the fractional self-adjoint equation Delta(nu)(nu-1) (p Delta y)(t) = h(t) for order 0 < nu <= 1 was reported in [9]. In this paper, we investigated the self-adjoint fractional finite difference equation Delta(nu)(nu-2)(p Delta u(t) = j(t,p(t+nu - 2)) via the boundary conditions y(nu - 2) = 0 , such that Delta y(nu - 2) = 0 and Delta y(nu+b) = 0. Also, we analyzed the self-adjoing fractional finite difference equation Delta(nu()(nu-2)p Delta(2)y)(t) = j(t,[(t+nu - 2)Delta(2)y(t+nu-3)) via the boundary conditions y(nu - 2) = 0, Delta y(nu - 2) = 0, Delta(2)y(nu - 2) = 0 and Delta 2y(nu+b) = 0. Finally, we conclude a result about the existence of solution for the general equation Delta(nu()(nu-2)p Delta(m)y)(t) = h(t,p(t+nu - m - 1)Delta(m)y(t+nu - m - 1)) via the boundary conditions y(nu - 2) = Delta y(nu - 2) = Delta(2)y(nu - 2) = center dot center dot center dot Delta(m)y(nu+b) = 0 for oder 1 < nu <= 2.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baleanu, Dumitru; Rezapour, Shallram; Salehi, Saeid (2015). "On some self-adjoint fractional finite difference equations", Journal of Computational Analysis and Applications, Vol. 19, No. 1, pp. 59- 67.

WoS Q

Scopus Q

Q4

Source

Volume

19

Issue

1

Start Page

59

End Page

67
Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo