On Some Self-Adjoint Fractional Finite Difference Equations
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.author | Salehi, Saeid | |
| dc.contributor.other | Matematik | |
| dc.date.accessioned | 2025-09-23T12:51:14Z | |
| dc.date.available | 2025-09-23T12:51:14Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | Recently, the existence of solution for the fractional self-adjoint equation Delta(nu)(nu-1) (p Delta y)(t) = h(t) for order 0 < nu <= 1 was reported in [9]. In this paper, we investigated the self-adjoint fractional finite difference equation Delta(nu)(nu-2)(p Delta u(t) = j(t,p(t+nu - 2)) via the boundary conditions y(nu - 2) = 0 , such that Delta y(nu - 2) = 0 and Delta y(nu+b) = 0. Also, we analyzed the self-adjoing fractional finite difference equation Delta(nu()(nu-2)p Delta(2)y)(t) = j(t,[(t+nu - 2)Delta(2)y(t+nu-3)) via the boundary conditions y(nu - 2) = 0, Delta y(nu - 2) = 0, Delta(2)y(nu - 2) = 0 and Delta 2y(nu+b) = 0. Finally, we conclude a result about the existence of solution for the general equation Delta(nu()(nu-2)p Delta(m)y)(t) = h(t,p(t+nu - m - 1)Delta(m)y(t+nu - m - 1)) via the boundary conditions y(nu - 2) = Delta y(nu - 2) = Delta(2)y(nu - 2) = center dot center dot center dot Delta(m)y(nu+b) = 0 for oder 1 < nu <= 2. | en_US |
| dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
| dc.description.sponsorship | Research of the second and third authors was supported by Azarbaijan Shahid Madani University. | en_US |
| dc.identifier.citation | Baleanu, Dumitru; Rezapour, Shallram; Salehi, Saeid (2015). "On some self-adjoint fractional finite difference equations", Journal of Computational Analysis and Applications, Vol. 19, No. 1, pp. 59- 67. | en_US |
| dc.identifier.issn | 1521-1398 | |
| dc.identifier.issn | 1572-9206 | |
| dc.identifier.scopus | 2-s2.0-84982777353 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15612 | |
| dc.language.iso | en | en_US |
| dc.publisher | Eudoxus Press, Llc | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.title | On Some Self-Adjoint Fractional Finite Difference Equations | en_US |
| dc.title | On some self-adjoint fractional finite difference equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55935081600 | |
| gdc.author.scopusid | 56152553900 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Rezapour, Shahram/N-4883-2016 | |
| gdc.author.yokid | 56389 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Rezapour, Shahram; Salehi, Saeid] Azarbaijan Shahid Madani Univ, Dept Math, Azarshahr, Tabriz, Iran | en_US |
| gdc.description.endpage | 67 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 59 | en_US |
| gdc.description.volume | 19 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.wos | WOS:000348559000005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.publishedmonth | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
