Mühendislik Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/2
Browse
Browsing Mühendislik Fakültesi by Publication Index "PubMed"
Now showing 1 - 20 of 147
- Results Per Page
- Sort Options
Article Citation - WoS: 110Citation - Scopus: 111Active Laser Radar Systems With Stochastic Electromagnetic Beams in Turbulent Atmosphere(Optica Publishing Group, 2008) Cai, Yangjian; Korotkova, Olga; Eyyuboglu, Halil T.; Baykal, YahyaPropagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam. (C) 2008 Optical Society of AmericaArticle Citation - WoS: 10Citation - Scopus: 13Adaptive Optics Corrections of Scintillations of Hermite-Gaussian Modes in an Oceanic Medium(Optical Soc Amer, 2020) Baykal, YahyaAdaptive optics correction of the scintillation index is found when Hermite-Gaussian laser beams are used in oceanic turbulence. Adaptive optics filter functions are used to find how the tilt, focus, astigmatism, coma, and total correction will behave under high order mode excitation. Reduction of the oceanic scintillation under various oceanic turbulence and system parameters is examined under different high order modes. Also, the effects of the source size, wavelength, and link length on the total adaptive optics correction of Hermite-Gaussian modes in an oceanic medium are investigated for different modes. (C) 2020 Optical Society of AmericaArticle Citation - WoS: 22Citation - Scopus: 23Alternative Interpretation of the Edge-Diffraction Phenomenon(Optical Soc Amer, 2008) Umul, Yusuf Z.An alternative interpretation of the phenomenon of edge diffraction is proposed according to a new separation of the Fresnel function. The subfields are investigated in the problem of diffraction of a plane wave by a perfectly conducting half-plane, and the results are compared numerically with other interpretations. (c) 2008 Optical Society of America.Article Citation - WoS: 98Citation - Scopus: 117Anaerobic Digestion of Dairy Manure With Enhanced Ammonia Removal(Academic Press Ltd- Elsevier Science Ltd, 2008) Uludag-Demirer, S.; Demirer, G. N.; Frear, C.; Chen, S.Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4-6H(2)O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect oil anaerobic bacteria. The results indicated that Lip to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2-6H(2)O to the anaerobic reactor. (C) 2007 Elsevier Ltd. All rights reserved.Article Citation - WoS: 12Analysis of Dengue Transmission Dynamic Model by Stability and Hopf Bifurcation With Two-Time Delays(Imr Press, 2023) Ambalarajan, Venkatesh; Sivakumar, Vinoth; Dhandapani, Prasantha Bharathi; Baleanu, Dumitru; Murugadoss, Prakash RajBackground: Mathematical models reflecting the epidemiological dynamics of dengue infection have been discovered dating back to 1970. The four serotypes (DENV-1 to DENV-4) that cause dengue fever are antigenically related but different viruses that are transmitted by mosquitoes. It is a significant global public health issue since 2.5 billion individuals are at risk of contracting the virus. Methods: The purpose of this study is to carefully examine the transmission of dengue with a time delay. A dengue transmission dynamic model with two delays, the standard incidence, loss of immunity, recovery from infectiousness, and partial protection of the human population was developed. Results: Both endemic equilibrium and illness-free equilibrium were examined in terms of the stability theory of delay differential equations. As long as the basic reproduction number (R0) is less than unity, the illness-free equilibrium is locally asymptotically stable; however, when R0 exceeds unity, the equilibrium becomes unstable. The existence of Hopf bifurcation with delay as a bifurcation parameter and the conditions for endemic equilibrium stability were examined. To validate the theoretical results, numerical simulations were done. Conclusions: The length of the time delay in the dengue transmission epidemic model has no effect on the stability of the illness-free equilibrium. Regardless, Hopf bifurcation may occur depending on how much the delay impacts the stability of the underlying equilibrium. This mathematical modelling is effective for providing qualitative evaluations for the recovery of a huge population of afflicted community members with a time delay.Article Citation - WoS: 183Citation - Scopus: 193Analysis of Reciprocity of Cos-Gaussian and Cosh-Gaussian Laser Beams in a Turbulent Atmosphere(Optical Soc Amer, 2004) Eyyuboglu, HT; Baykal, YIn a turbulent atmosphere, starting with a cos-Gaussian excitation at the source plane, the average intensity profile at the receiver plane is formulated. This average intensity profile is evaluated against the variations of link lengths, turbulence levels, two frequently used free-space optics wavelengths, and beam displacement parameters. We show that a cos-Gaussian beam, following a natural diffraction, is eventually transformed into a cosh-Gaussian beam. Combining our earlier results with the current findings, we conclude that cos-Gaussian and cosh-Gaussian beams act in a reciprocal manner after propagation in turbulence. The rates (paces) of conversion in the two directions are not the same. Although the conversion of cos-Gaussian beams to cosh-Gaussian beams can happen over a wide range of turbulence levels (low to moderate to high), the conversion of cosh-Gaussian beams to cos-Gaussian beams is pronounced under relatively stronger turbulence conditions. Source and propagation parameters that affect this reciprocity have been analyzed. (C) 2004 Optical Society of America.Article Citation - WoS: 9Citation - Scopus: 20An Analysis on the Relationship Between Safety Awareness and Safety Behaviors of Healthcare Professionals, Ankara/Turkey(Oxford Univ Press, 2020) Uzuntarla, Fatma; Kucukali, Serhat; Uzuntarla, YasinObjectives: This descriptive study aims to examine the relationship between the safety awareness of healthcare professional and their safety behaviors. Methods: The study was carried out on 418 healthcare professionals working in a training and research hospital in Ankara/Turkey. The survey method was used as data collection tool. The questionnaire consisted of 3 sections and 18 questions. First section consisted of questions on sociodemographic characteristics and, second section consisted of the awareness scale and third section consisted of safety behaviors scale. Results: The safety awareness and safety behaviors are scored on a scale from 1 (completely disagree) to 5 (completely agree). The safety awareness and safety behaviors has an average score of 3.85 +/- 0.81 and 3.56 +/- 0.82, respectively. The safety awareness and safety behavior levels of healthcare professionals were found to be high. Conclusion: A significant positive correlation was found between safety awareness and safety behaviors and it was concluded that the increase in safety awareness led to an increase in safety behavior.Article Citation - WoS: 37Citation - Scopus: 44Annular Beam Scintillations in Strong Turbulence(Optical Soc Amer, 2010) Gercekcioglu, Hamza; Baykal, Yahya; Nakiboglu, CemA scintillation index formulation for annular beams in strong turbulence is developed that is also valid in moderate and weak turbulence. In our derivation, a modified Rytov solution is employed to obtain the small-scale and large-scale scintillation indices of annular beams by utilizing the amplitude spatial filtering of the atmospheric spectrum. Our solution yields only the on-axis scintillation index for the annular beam and correctly reduces to the existing strong turbulence results for the Gaussian beam-thus plane and spherical wave scintillation indices-and also correctly yields the existing weak turbulence annular beam scintillations. Compared to collimated Gaussian beam, plane, and spherical wave scintillations, collimated annular beams seem to be advantageous in the weak regime but lose this advantage in strongly turbulent atmosphere. It is observed that the contribution of annular beam scintillations comes mainly from the small-scale effects. At a fixed primary beam size, the scintillations of thinner collimated annular beams compared to thicker collimated annular beams are smaller in moderate turbulence but larger in strong turbulence; however, thinner annular beams of finite focal length have a smaller scintillation index than the thicker annular beams in strong turbulence. Decrease in the focal length decreases the annular beam scintillations in strong turbulence. Examining constant area annular beams, smaller primary sized annular structures have larger scintillations in moderate but smaller scintillations in strong turbulence. (C) 2010 Optical Society of AmericaArticle Citation - WoS: 26Citation - Scopus: 26Aperture Averaging in Multiple-Input Single-Output Free-Space Optical Systems Using Partially Coherent Radial Array Beams(Optical Soc Amer, 2016) Baykal, Yahya; Uysal, Murat; Gokce, Muhsin CanerMultiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens - Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. (C) 2016 Optical Society of AmericaArticle Citation - WoS: 7Citation - Scopus: 8Apertured Paraxial Bessel Beams(Optical Soc Amer, 2010) Umul, Yusuf Z.The paraxial Bessel beam is obtained by applying an approximation in the wavenumbers. The scattering of the beams by a circular aperture in an absorbing screen is investigated. The scattered fields are expressed in terms of the Fresnel integrals by evaluating the Kirchhoff diffraction integral in the paraxial approximation. The results are examined numerically. (C) 2010 Optical Society of AmericaArticle Citation - WoS: 41Citation - Scopus: 53Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methods(Springer, 2022) Maras, Hadi Hakan; Ureten, KemalRheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis.Article Citation - WoS: 53Citation - Scopus: 58Average Intensity and Spreading of an Elegant Hermite-Gaussian Beam in Turbulent Atmosphere(Optical Soc Amer, 2009) Yuan, Yangsheng; Cai, Yangjian; Qu, Jun; Eyyuboglu, Halil T.; Baykal, YahyaThe propagation of an elegant Hermite-Gaussian beam (EHGB) in turbulent atmosphere is investigated. Analytical propagation formulae for the average intensity and effective beam size of an EHGB in turbulent atmosphere are derived based on the extended Huygens-Fresnel integral. The corresponding results of a standard Hermite-Gaussian beam (SHGB) in turbulent atmosphere are also derived for the convenience of comparison. The intensity and spreading properties of EHGBs and SHGBs in turbulent atmosphere are studied numerically and comparatively. It is found that the propagation properties of EHGBs and SHGBs are much different from their properties in free space, and the EHGB and SHGB with higher orders are less affected by the turbulence. What's more, the SHGB spreads more rapidly than the EHGB in turbulent atmosphere under the same conditions. Our results will be useful in long-distance free-space optical communications. (C) 2009 Optical Society of AmericaArticle Citation - WoS: 127Citation - Scopus: 135Average Intensity and Spreading of Cosh-Gaussian Laser Beams in the Turbulent Atmosphere(Optical Soc Amer, 2005) Eyyuboglu, HT; Baykal, YThe average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere are examined. Our research is based principally on formulating the average-intensity profile at the receiver plane for cosh-Gaussian excitation. The limiting cases of our formulation for the average intensity are found to reduce correctly to the existing Gaussian beam wave result in turbulence and the cosh-Gaussian beam result in free space (in the absence of turbulence). The average intensity and the broadening of the cosh-Gaussian beam wave after it propagates in the turbulent atmosphere are numerically evaluated versus source size, beam displacement, link length, structure constant, and two wavelengths of 0.85 and 1.55 mum, which are most widely used in currently employed free-space-optical links. Results indicate that in turbulence the beam is widened beyond its free-space diffraction values. At the receiver plane, analogous to the case of free space, this diffraction eventually leads to transformation of the cosh-Gaussian beam into an oscillatory average-intensity profile with a Gaussian envelope. (C) 2005 Optical Society of America.Article Citation - WoS: 114Citation - Scopus: 118Average Irradiance and Polarization Properties of a Radially or Azimuthally Polarized Beam in a Turbulent Atmosphere(Optical Soc Amer, 2008) Cai, Yangjian; Lin, Qiang; Eyyuboglu, Halil T.; Baykal, YahyaAnalytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence. (C) 2008 Optical Society of America.Article Citation - WoS: 4Citation - Scopus: 4Beam Diffraction by a Resistive Half-Plane(Optical Soc Amer, 2015) Umul, Yusuf ZiyaThe scattering of a Gaussian beam by a resistive half-screen is investigated. Far-field approximation is used in evaluation of geometrical optics and diffracted waves. The uniform expression of the diffracted waves by the resistive half-plane, which was found with the Sommerfeld-Maliuzhinets method, is obtained. The scattered fields for the case of the beam incidence are evaluated with the technique of a complex point source. The resultant wave expressions are examined numerically. (C) 2015 Optical Society of AmericaArticle Citation - WoS: 24Citation - Scopus: 27Bi-Objective Adaptive Large Neighborhood Search Algorithm for the Healthcare Waste Periodic Location Inventory Routing Problem(Springer Heidelberg, 2022) Aydemir-Karadag, AyyuceThere has been an unexpected increase in the amount of healthcare waste during the COVID-19 pandemic. Managing healthcare waste is vital, as improper practices in the waste system can lead to the further spread of the virus. To develop effective and sustainable waste management systems, decisions in all processes from the source of the waste to its disposal should be evaluated together. Strategic decisions involve locating waste processing centers, while operational decisions deal with waste collection. Although the periodic collection of waste is used in practice, it has not been studied in the relevant literature. This paper integrates the periodic inventory routing problem with location decisions for designing healthcare waste management systems and presents a bi-objective mixed-integer nonlinear programming model that minimizes operating costs and risk simultaneously. Due to the complexity of the problem, a two-step approach is proposed. The first stage provides a mixed-integer linear model that generates visiting schedules to source nodes. The second stage offers a Bi-Objective Adaptive Large Neighborhood Search Algorithm (BOALNS) that processes the remaining decisions considered in the problem. The performance of the algorithm is tested on several hypothetical problem instances. Computational analyses are conducted by comparing BOALNS with its other two versions, Adaptive Large Neighborhood Search Algorithm and Bi-Objective Large Neighborhood Search Algorithm (BOLNS). The computational experiments demonstrate that our proposed algorithm is superior to these algorithms in several performance evaluation metrics. Also, it is observed that the adaptive search engine increases the capability of BOALNS to achieve high-quality Pareto-optimal solutions.Article Citation - WoS: 11Citation - Scopus: 12Bit Error Rate Analysis of Gaussian, Annular Gaussian, Cos Gaussian, and Cosh Gaussian Beams With the Help of Random Phase Screens(Optical Soc Amer, 2014) Eyyuboglu, Halil T.Using the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens. Upon arriving at the receiver plane, detection is performed in a circuitry consisting of a pin photodiode and a matched filter. The symbols detected are compared with the transmitted ones, errors are counted, and from there the probability of error is evaluated numerically. Within the range of source and propagation parameters tested, the lowest probability of error is obtained for the annular Gaussian beam. Our investigation reveals that there is hardly any difference between the aperture-averaged scintillations of the beams used, and the distinctive advantage of the annular Gaussian beam lies in the fact that the receiver aperture captures the maximum amount of power when this particular beam is launched from the transmitter plane. (C) 2014 Optical Society of AmericaArticle Citation - WoS: 30Citation - Scopus: 31Bit Error Rate of Pulse Position Modulated Optical Wireless Communication Links in Oceanic Turbulence(Optical Soc Amer, 2018) Baykal, YahyaThe upper bound of the average bit error rate (BER) of a pulse position modulated (PPM) optical wireless communication (OWC) link operating in oceanic turbulence is formulated. BER variations against the changes in the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of mean-squared temperature, and the rate of dissipation of kinetic energy per unit mass of fluid are found at various data bit rates, average current gains of the avalanche photodiode (APD), and M values of the M-ary PPM. It is found that under any oceanic turbulence parameters, BER performance of the PPM OWC system becomes favorable at smaller data bit rates, M values, and at larger average current gains of APD. (c) 2018 Optical Society of AmericaArticle Citation - WoS: 28Citation - Scopus: 28Bit Error Rates for General Beams(Optical Soc Amer, 2008) Arpali, Serap Altay; Eyyuboglu, Halil T.; Baykal, YahyaIn order to analyze the effect of beam type on free space optical communication systems, bit error rate (BER) values versus signal-to-noise ratio (SNR) are calculated for zero order and higher order general beam types, namely for Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams. BER analysis is based on optical scintillation using log-normal distribution for the intensity, which is valid in weak atmospheric turbulence. BERs for these beams are plotted under variations of propagation length, source size, wavelength of operation, and order of the beam. According to our graphical outputs, at small source sizes and long propagation distances, the smallest BER value is obtained for the annular beam. On the other hand, at large source size and small propagation distance, the smallest BER value is obtained for the cos-Gaussian beam, Moreover, our study of the order of the beam shows that higher order beams have lower BER values than the zero order beams at longer propagation distances. But this drop compared with the order seems to be incremental. (c) 2008 Optical Society of AmericaArticle Citation - WoS: 15Citation - Scopus: 17Characterization of Ti6al7nb Alloy Foams Surface Treated in Aqueous Naoh and Cacl2 Solutions(Elsevier Science Bv, 2016) Esen, Ziya; Bor, Sakir; Butev, EzgiTi6Al7Nb alloy foams having 53-73% porosity were manufactured via evaporation of magnesium space holders. A bioactive 1 mu m thick sodium hydrogel titanate layer, NaxH2-xTiyO2y+1., formed after 5 M NaOH treatment, was converted to crystalline sodium titanate, Na2TiyO2y+1, as a result of post-heat treatment. On the other hand, subsequent CaCl2 treatment of NaOH treated specimens induced calcium titanate formation. However, heat treatment of NaOH-CaCl2 treated specimens led to the loss of calcium and disappearance of the titanate phase. All of the aforementioned surface treatments reduced yield strengths due to the oxidation of the cell walls of the foams, while elastic moduli remained mostly unchanged. Accordingly, equiaxed dimples seen on the fracture surfaces of as-manufactured foams turned into relatively flat and featureless fracture surfaces after surface treatments. On the other hand, Ca- and Na-rich coating preserved their mechanical stabilities and did not spall during fracture. The relation between mechanical properties of foams and macro-porosity fraction were found to obey a power law. The foams with 63 and 73% porosity met the desired biocompatibility requirements with fully open pore structures and elastic moduli similar to that of bone. In vitro tests conducted in simulated body fluid (SBF) showed that NaOH-heat treated surfaces exhibit the highest bioactivity and allow the formation of Ca-P rich phases having Ca/P ratio of 1.3 to form within 5 days. Although Ca-P rich phases formed only after 15 days on NaOH-CaCl2 treated specimens, the Ca/P ratio was closer to that of apatite found in bone. (C) 2016 Elsevier Ltd. All rights reserved.

