Bilgisayar Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/253
Browse
Browsing Bilgisayar Mühendisliği Bölümü Yayın Koleksiyonu by Publication Index "PubMed"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Article Citation - WoS: 41Citation - Scopus: 53Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methods(Springer, 2022) Maras, Hadi Hakan; Ureten, KemalRheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis.Conference Object Citation - WoS: 2Citation - Scopus: 2Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set(Ios Press, 2019) Akcapinar Sezer, Ebru; Sever, Hayri; Par, Oznur EsraClinical decision support systems are data analysis software that supports health professionals' decision - making the process to reach their ultimate outcome, taking into account patient information. However, the need for decision support systems cannot be denied because of most activities in the field of health care within the decision-making process. Decision support systems used for diagnosis are designed based on disease due to the complexity of diseases, symptoms, and disease-symptoms relationships. In the design and implementation of clinical decision support systems, mathematical modeling, pattern recognition and statistical analysis techniques of large databases and data mining techniques such as classification are also widely used. Classification of data is difficult in case of the small and / or imbalanced data set and this problem directly affects the classification performance. Small and/or imbalance dataset has become a major problem in data mining because classification algorithms are developed based on the assumption that the data sets are balanced and large enough. Most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Most health data are small and imbalanced by nature. Learning from imbalanced and small data sets is an important and unsettled problem. Within the scope of the study, the publicly accessible data set, hepatitis was oversampled by distance-based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms. Considering the classification scores of four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree), optimal synthetic data generation rate is recommended.Article Citation - WoS: 8Citation - Scopus: 8Comparative Analysis on Wavelet-Based Detection of Finite Duration Low-Amplitude Signals Related To Ventricular Late Potentials(Iop Publishing Ltd, 2004) Mousa, A; Yilmaz, AVentricular late potentials (VLPs) are considered as a noninvasive marker of patients with myocardial infarction, who are prone to the development of ventricular tachycardia. This paper investigates the effects of variations in physical properties of myocardial infarcts in terms of their effects on the parametric variations in VLP analysis. A sufficiently large set of signals underlining the behavior of physical parameters was employed to represent the effect of physical size, position, orientation and type of infarct. The approximated signals are variations from real electrocardiography signals by adding potentials representing late potentials based on duration, frequency, amplitude and position. The aim is not to exactly model VLP but rather to generate an approximate set of signals to examine the performance of the standard methods for different possibilities in infarct dynamics. We investigate some of the detection approaches together with their related assumptions, and try to pinpoint the drawbacks and inaccuracies of these methods and also their assumptions. The three widely accepted criteria-QRS duration, root-mean-square and duration of the signal at the end of QRS for VLP detection-were used in the investigation. Results from the application of these parameters to the set of signals are presented. In addition we investigate the physical nature of an infarct and list a number of possible reasons that might be the cause of a low success rate for the detection of additive potentials. To improve the performance of the common methods, two more wavelet transform parameters are added to those of the standard methods. The method derived from this analysis is presented as an alternative means for the detection of late signals named as delayed potentials, a more general class that includes VLP as a subset.Article Citation - WoS: 21Citation - Scopus: 22Computerized Detection and Segmentation of Mitochondria on Electron Microscope Images(Wiley, 2012) Tasel, S. F.; Perkins, G.; Martone, M. E.; Gurcan, M. N.; Mumcuoglu, E. U.; Hassanpour, R.Mitochondrial function plays an important role in the regulation of cellular life and death, including disease states. Disturbance in mitochondrial function and distribution can be accompanied by significant morphological alterations. Electron microscopy tomography (EMT) is a powerful technique to study the 3D structure of mitochondria, but the automatic detection and segmentation of mitochondria in EMT volumes has been challenging due to the presence of subcellular structures and imaging artifacts. Therefore, the interpretation, measurement and analysis of mitochondrial distribution and features have been time consuming, and development of specialized software tools is very important for high-throughput analyses needed to expedite the myriad studies on cellular events. Typically, mitochondrial EMT volumes are segmented manually using special software tools. Automatic contour extraction on large images with multiple mitochondria and many other subcellular structures is still an unaddressed problem. The purpose of this work is to develop computer algorithms to detect and segment both fully and partially seen mitochondria on electron microscopy images. The detection method relies on mitochondria's approximately elliptical shape and double membrane boundary. Initial detection results are first refined using active contours. Then, our seed point selection method automatically selects reliable seed points along the contour, and segmentation is finalized by automatically incorporating a live-wire graph search algorithm between these seed points. In our evaluations on four images containing multiple mitochondria, 52 ellipses are detected among which 42 are true and 10 are false detections. After false ellipses are eliminated manually, 14 out of 15 fully seen mitochondria and 4 out of 7 partially seen mitochondria are successfully detected. When compared with the segmentation of a trained reader, 91% Dice similarity coefficient was achieved with an average 4.9 nm boundary error.Article Citation - WoS: 22Citation - Scopus: 24Deep Learning Methods in the Diagnosis of Sacroiliitis From Plain Pelvic Radiographs(Oxford Univ Press, 2023) Ureten, Kemal; Maras, Yuksel; Duran, Semra; Gok, KevserObjectives The aim of this study is to develop a computer-aided diagnosis method to assist physicians in evaluating sacroiliac radiographs. Methods Convolutional neural networks, a deep learning method, were used in this retrospective study. Transfer learning was implemented with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. Normal pelvic radiographs (n = 290) and pelvic radiographs with sacroiliitis (n = 295) were used for the training of networks. Results The training results were evaluated with the criteria of accuracy, sensitivity, specificity and precision calculated from the confusion matrix and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. Pre-trained VGG-16 model revealed accuracy, sensitivity, specificity, precision and AUC figures of 89.9%, 90.9%, 88.9%, 88.9% and 0.96 with test images, respectively. These results were 84.3%, 91.9%, 78.8%, 75.6 and 0.92 with pre-trained ResNet-101, and 82.0%, 79.6%, 85.0%, 86.7% and 0.90 with pre-trained inception-v3, respectively. Conclusions Successful results were obtained with all three models in this study where transfer learning was applied with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. This method can assist clinicians in the diagnosis of sacroiliitis, provide them with a second objective interpretation and also reduce the need for advanced imaging methods such as magnetic resonance imaging.Article Citation - WoS: 42Citation - Scopus: 50Detection of Hip Osteoarthritis by Using Plain Pelvic Radiographs With Deep Learning Methods(Springer, 2020) Ureten, Kemal; Arslan, Tayfun; Gultekin, Korcan Emre; Demir, Ayse Nur Demirgoz; Ozer, Hafsa Feyza; Bilgili, YaseminObjective The incidence of osteoarthritis is gradually increasing in public due to aging and increase in obesity. Various imaging methods are used in the diagnosis of hip osteoarthritis, and plain pelvic radiography is the first preferred imaging method in the diagnosis of hip osteoarthritis. In this study, we aimed to develop a computer-aided diagnosis method that will help physicians for the diagnosis of hip osteoarthritis by interpreting plain pelvic radiographs. Materials and methods In this retrospective study, convolutional neural networks were used and transfer learning was applied with the pre-trained VGG-16 network. Our dataset consisted of 221 normal hip radiographs and 213 hip radiographs with osteoarthritis. In this study, the training of the network was performed using a total of 426 hip osteoarthritis images and a total of 442 normal pelvic images obtained by flipping the raw data set. Results Training results were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated by using the confusion matrix. We achieved accuracy, sensitivity, specificity and precision results at 90.2%, 97.6%, 83.0%, and 84.7% respectively. Conclusion We achieved promising results with this computer-aided diagnosis method that we tried to develop using convolutional neural networks based on transfer learning. This method can help clinicians for the diagnosis of hip osteoarthritis while interpreting plain pelvic radiographs, also provides assistance for a second objective interpretation. It may also reduce the need for advanced imaging methods in the diagnosis of hip osteoarthritis.Article Citation - WoS: 62Citation - Scopus: 71Detection of Rheumatoid Arthritis From Hand Radiographs Using a Convolutional Neural Network(Springer London Ltd, 2020) Ureten, Kemal; Erbay, Hasan; Maras, Hadi HakanIntroduction Plain hand radiographs are the first-line and most commonly used imaging methods for diagnosis or differential diagnosis of rheumatoid arthritis (RA) and for monitoring disease activity. In this study, we used plain hand radiographs and tried to develop an automated diagnostic method using the convolutional neural networks to help physicians while diagnosing rheumatoid arthritis. Methods A convolutional neural network (CNN) is a deep learning method based on a multilayer neural network structure. The network was trained on a dataset containing 135 radiographs of the right hands, of which 61 were normal and 74 RA, and tested it on 45 radiographs, of which 20 were normal and 25 RA. Results The accuracy of the network was 73.33% and the error rate 0.0167. The sensitivity of the network was 0.6818; the specificity was 0.7826 and the precision 0.7500. Conclusion Using only pixel information on hand radiographs, a multi-layer CNN architecture with online data augmentation was designed. The performance metrics such as accuracy, error rate, sensitivity, specificity, and precision state shows that the network is promising in diagnosing rheumatoid arthritis.Article Citation - WoS: 11Citation - Scopus: 14The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods(Lippincott Williams & Wilkins, 2023) Ureten, Kemal; Tokdemir, Gul; Tolunay, Tolga; Ciceklidag, Murat; Atik, Osman Sahap; Atalar, HakanBackground:Hip ultrasonography is very important in the early diagnosis of developmental dysplasia of the hip. The application of deep learning-based medical image analysis to computer-aided diagnosis has the potential to provide decision-making support to clinicians and improve the accuracy and efficiency of various diagnostic and treatment processes. This has encouraged new research and development efforts in computer-aided diagnosis. The aim of this study was to evaluate hip sonograms using computer-assisted deep-learning methods. Methods:The study included 376 sonograms evaluated as normal according to the Graf method, 541 images with dysplasia and 365 images with incorrect probe position. To classify the developmental hip dysplasia ultrasound images, transfer learning was applied with pretrained VGG-16, ResNet-101, MobileNetV2 and GoogLeNet networks. The performances of the networks were evaluated with the performance parameters of accuracy, sensitivity, specificity, precision, F1 score, and AUC (area under the ROC curve). Results:The accuracy, sensitivity, specificity, precision, F1 score, and AUC results obtained by testing the VGG-16, ResNet-101, MobileNetV2, and GoogLeNet models showed performance >80%. With the pretrained VGG-19 model, 93%, 93.5%, 96.7%, 92.3%, 92.6%, and 0.99 accuracy, sensitivity, specificity, precision, F1 score, and AUC results were obtained, respectively. Conclusion:In this study, in addition to the ultrasonography images of dysplastic and healthy hips, images were also included of probe malpositioning, and these images were able to be successfully evaluated with deep learning methods. On the sonograms, which provided criteria appropriate for evaluation, successful differentiation could be made of healthy hips and dysplastic hips.Article Citation - WoS: 10Citation - Scopus: 11The Diagnosis of Femoroacetabular Impingement Can Be Made on Pelvis Radiographs Using Deep Learning Methods(Turkish Joint Diseases Foundation, 2023) Atalar, Ebru; Ureten, Kemal; Kanatli, Ulunay; Ciceklidag, Murat; Kaya, Ibrahim; Vural, Abdurrahman; Maras, YukselObjectives: The aim of this study was to evaluate diagnostic ability of deep learning models, particularly convolutional neural network models used for image classification, for femoroacetabular impingement (FAI) using hip radiographs. Materials and methods: Between January 2010 and December 2020, pelvic radiographs of a total of 516 patients (270 males, 246 females; mean age: 39.1 +/- 3.8 years; range, 20 to 78 years) with hip pain were retrospectively analyzed. Based on inclusion and exclusion criteria, a total of 888 hip radiographs (308 diagnosed with FAI and 508 considered normal) were evaluated using deep learning methods. Pre-trained VGG-16, ResNet-101, MobileNetV2, and Inceptionv3 models were used for transfer learning. Results: As assessed by performance measures such as accuracy, sensitivity, specificity, precision, F-1 score, and area under the curve (AUC), the VGG-16 model outperformed other pre-trained networks in diagnosing FAI. With the pre-trained VGG-16 model, the results showed 86.6% accuracy, 82.5% sensitivity, 89.6% specificity, 85.5% precision, 83.9% F1 score, and 0.92 AUC. Conclusion: In patients with suspected FAI, pelvic radiography is the first imaging method to be applied, and deep learning methods can help in the diagnosis of this syndrome.Article Citation - WoS: 11Citation - Scopus: 11Diagnosis of Osteoarthritic Changes, Loss of Cervical Lordosis, and Disc Space Narrowing on Cervical Radiographs With Deep Learning Methods(Turkish Joint Diseases Foundation, 2022) Tokdemir, Gul; Ureten, Kemal; Atalar, Ebru; Duran, Semra; Maras, Hakan; Maras, YukselObjectives: In this study, we aimed to differentiate normal cervical graphs and graphs of diseases that cause mechanical neck pain by using deep convolutional neural networks (DCNN) technology. Materials and methods: In this retrospective study, the convolutional neural networks were used and transfer learning method was applied with the pre-trained VGG-16, VGG-19, Resnet-101, and DenseNet-201 networks. Our data set consisted of 161 normal lateral cervical radiographs and 170 lateral cervical radiographs with osteoarthritis and cervical degenerative disc disease. Results: We compared the performances of the classification models in terms of performance metrics such as accuracy,Article Citation - WoS: 22Citation - Scopus: 21Functionalizing Graphene by Embedded Boron Clusters(Iop Publishing Ltd, 2008) Ozdogan, Cem; Kunstmann, Jens; Fehske, Holger; Quandt, AlexanderWe present a model system that might serve as a blueprint for the controlled layout of graphene based nanodevices. The systems consists of chains of B-7 clusters implanted in a graphene matrix, where the boron clusters are not directly connected. We show that the graphene matrix easily accepts these alternating B-7-C-6 chains and that the implanted boron components may dramatically modify the electronic properties of graphene based nanomaterials. This suggests a functionalization of graphene nanomaterials, where the semiconducting properties might be supplemented by parts of the graphene matrix itself, but the basic wiring will be provided by alternating chains of implanted boron clusters that connect these areas.Article Citation - WoS: 2Citation - Scopus: 3Mining Medline for the Treatment of Osteoporosis(Springer, 2012) Ceken, Cinar; Hassanpour, Reza; Esmelioglu, Sadik; Tolun, Mehmet Resit; Yildirim, PinarIn this paper, we consider the importance of osteoporosis disease in terms of medical research and pharmaceutical industry and we introduce a knowledge discovery approach regarding the treatment of osteoporosis from a historical perspective. Osteoporosis is a systemic skeletal disease in which osteoporotic fractures are associated with substantial morbidity and mortality and impaired quality of life. Osteoporosis has also higher costs, for example, longer hospital stays than many other diseases such as diabetes and heart attack and it is an attractive market for pharmaceutical companies. We use a freely available biomedical search engine leveraging text-mining technology to extract the drug names used in the treatment of osteoporosis from MEDLINE articles. We conclude that alendronate (Fosamax) and raloxifene (Evista) have the highest number of articles in MEDLINE and seem the dominating drugs for the treatment of osteoporosis in the last decade.Article Citation - WoS: 7Citation - Scopus: 10Prediction of Similarities Among Rheumatic Diseases(Springer, 2012) Ceken, Cinar; Hassanpour, Reza; Tolun, Mehmet Resit; Yildirim, PinarWe introduce a method for extracting hidden patterns seen in rheumatic diseases by using articles from the widely used biomedical database MEDLINE. Rheumatic diseases affect hundreds of millions of people worldwide and lead to substantial loss of functioning and mobility. Diagnosing rheumatic diseases can be difficult because some symptoms are common to many of them. We use Facta system as a biomedical text mining tool for finding symptoms and then create a dataset with the frequencies of symptoms for each disease and apply hierarchical clustering analysis to find similarities between diseases. Clustering analysis yields four distinct types or groups of rheumatic diseases. Although our results cannot remove all the uncertainty for the diagnosis of rheumatic diseases, we believe they can contribute to the diagnosis of rheumatic diseases to a certain extent. We hope that some similarities exposed can provide additional information at the stage of decision-making.Article Citation - WoS: 20Citation - Scopus: 29Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model(Mdpi, 2020) Kaya, Aydin; Keceli, Ali Seydi; Catal, Cagatay; Tekinerdogan, BedirFor the agricultural food production sector, the control and assessment of food quality is an essential issue, which has a direct impact on both human health and the economic value of the product. One of the fundamental properties from which the quality of the food can be derived is the smell of the product. A significant trend in this context is machine olfaction or the automated simulation of the sense of smell using a so-called electronic nose or e-nose. Hereby, many sensors are used to detect compounds, which define the odors and herewith the quality of the product. The proper assessment of the food quality is based on the correct functioning of the adopted sensors. Unfortunately, sensors may fail to provide the correct measures due to, for example, physical aging or environmental factors. To tolerate this problem, various approaches have been applied, often focusing on correcting the input data from the failed sensor. In this study, we adopt an alternative approach and propose machine learning-based failure tolerance that ignores failed sensors. To tolerate for the failed sensor and to keep the overall prediction accuracy acceptable, a Single Plurality Voting System (SPVS) classification approach is used. Hereby, single classifiers are trained by each feature and based on the outcome of these classifiers, and a composed classifier is built. To build our SPVS-based technique, K-Nearest Neighbor (kNN), Decision Tree, and Linear Discriminant Analysis (LDA) classifiers are applied as the base classifiers. Our proposed approach has a clear advantage over traditional machine learning models since it can tolerate the sensor failure or other types of failures by ignoring and thus enhance the assessment of food quality. To illustrate our approach, we use the case study of beef cut quality assessment. The experiments showed promising results for beef cut quality prediction in particular, and food quality assessment in general.Article Citation - WoS: 9Citation - Scopus: 16A Serious Game for Improving the Decision Making Skills and Knowledge Levels of Turkish Football Referees According To the Laws of the Game(Springer international Publishing Ag, 2016) Gulec, Ulas; Yilmaz, MuratDigital game-based learning environments provide emerging opportunities to overcome learning barriers by combining newly developed technologies and traditional game design. This study proposes a quantitative research approach supported by expert validation interviews to designing a game-based learning framework. The goal is to improve the learning experience and decision-making skills of soccer referees in Turkey. A serious game was developed and tested on a group of referees (N = 54). The assessment results of these referees were compared with two sample t-test and the Wilcoxon signed-ranked test for both the experimental group and the control group. The findings of the current study confirmed that a game-based learning environment has greater merit over the paper-based alternatives.Article Citation - WoS: 18Citation - Scopus: 25Software Professionals During the Covid-19 Pandemic in Turkey: Factors Affecting Their Mental Well-Being and Work Engagement in the Home-Based Work Setting(Elsevier Science inc, 2022) Tokdemir, GulWith the COVID-19 pandemic, strict measures have been taken to slow down the spread of the virus, and consequently, software professionals have been forced to work from home. However, home based working entails many challenges, as the home environment is shared by the whole family simultaneously under pandemic conditions. The aim of this study is to explore software professionals' mental well-being and work engagement and the relationships of these variables with job strain and resource-related factors in the forced home-based work setting during the COVID-19 pandemic. An online cross-sectional survey based on primarily well-known, validated scales was conducted with software professionals in Turkey. The analysis of the results was performed through hierarchical multivariate regression. The results suggest that despite the negative effect of job strain, the resource related protective factors, namely, sleep quality, decision latitude, work-life balance, exercise predict mental well-being. Additionally, work engagement is predicted by job strain, sleep quality, and decision latitude. The results of the study will provide valuable insights to management of the software companies and professionals about the precautions that can be taken to have a better home-based working experience such as allowing greater autonomy and enhancing the quality of sleep and hence mitigating the negative effects of pandemic emergency situations on software professionals' mental well-being and work engagement. (C)& nbsp;2022 Elsevier Inc. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 6Towards a Process Management Life-Cycle Model for Graduation Projects in Computer Engineering(Public Library Science, 2018) Gulec, Ulas; Sopaoglu, Ugur; Yilmaz, Murat; Tasel, Faris SerdarGraduation projects play an important role in computer engineering careers in which students are expected to draw upon their knowledge and skills that were acquired since admission. To manage the activities of graduation projects, an iterative and incremental approach which aims continuous improvement is proposed as an alternative to a controversial delivery model. However, such integration brings up a set of challenges to be taken into account: e.g. multiple project deliveries, more labor-intensive effort from instructors, and ultimately continuous learning for all participants. One promising way to achieve such an integrated and continuous deployment velocity is to eliminate potential bottlenecks by giving student teams to receive early and continuous feedback. To this end, we propose a continuous feedback and delivery mechanism for managing the life-cycle of a graduation project through draft proposal, literature review, requirements gathering, design, implementation and testing which should produce intermediate outputs at predefined intervals. Most importantly, our approach makes it possible to quantify most of the activities involved in life-cycle process with various rubrics (i.e. measurement scales) that have been purposefully developed. The proposed model promotes the fact that all improvements should be monitored, evaluated and documented. The results of this study indicate that students who were managed using this approach produced better project deliverables and ultimately have delivered better and successful projects.Article Citation - WoS: 14Citation - Scopus: 18A Validated Active Contour Method Driven by Parabolic Arc Model for Detection and Segmentation of Mitochondria(Academic Press inc Elsevier Science, 2016) Hassanpour, Reza Z.; Perkins, Guy; Tasel, Serdar F.; Mumcuoglu, Erkan U.Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondria] function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14 nm respectively. (C) 2016 Elsevier Inc. All rights reserved.

