Makine Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/19
Browse
Browsing Makine Mühendisliği Bölümü by Scopus Q "Q2"
Now showing 1 - 20 of 35
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 12Analysis and Characterization of an Electrostatically Actuated In-Plane Parylene Microvalve(Iop Publishing Ltd, 2011) Kulah, H.; Yildirim, E.; 31835; 120121This paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Microvalves with different diaphragm radii are fabricated using surface micromachining techniques. Pull-in tests are carried out under the no-flow condition with air, oil and water as the working fluid. Test results show that the pull-in occurs around 20 V for 450 mu m radius diaphragms with oil and air. However, it is not possible to observe pull-in up to 100 V (both ac and dc) for the case of water as the working fluid, due to its relatively high dielectric constant and conductivity. The flow tests show that no leakage flow was observed up to 4 kPa inlet pressure under 85 V actuation potential. The leakage ratio becomes 17% at 10 kPa inlet pressure. It is observed that the leakage can be reduced controllably by increasing the actuation potential, enabling the precise control of the flow rate.Article Citation - WoS: 2Citation - Scopus: 2Analysis and Simplified Modelling of Simulation of Tests for Medium-Duty Truck Collision With Twin Anti-Ram Bollards(Taylor & Francis Ltd, 2020) Akyurek, Turgut; 48511An actual test of medium-duty truck collision with twin anti-ram bollards of steel tube is analysed and simulated with different mass-spring-damper models to study bollard design requirements. Test data is obtained from test report of a medium-duty truck crashed into two fixed twin bollards at speed 78.3 km/h. Maximum impact load and impact height at that time is important in the analysis. Bollard height should be close to or larger than the vehicle's centre of gravity height to avoid climbing of the truck on the bollard. However, increasing impact height yields also increase in failure risk of bollard. Foundation is also critical in success of the bollard in successfully stopping the vehicle. The bollard should be fixed to the frame embedded in the concrete foundation so that the deformation in concrete be minimised. The bollard should be so stiff to stop the vehicle while most of the impact energy is absorbed by the vehicle through deformation of its frontal sections. A single-degree freedom linear mass-spring-damper model is the simplest model, but its results are not in line with test data. Single-degree non-linear model simulates the peak load but not the load history. However, using engine mass instead of truck mass in the single-degree model provides acceptable impact force data for the bollard. Two-degree freedom mass-spring damper linear model seems to simulate both truck's and bollard's deformation in a good manner. Non-linear analysis simulates the collision in a more realistic way, but it requires more data to be determined with testing.Article Citation - WoS: 5Citation - Scopus: 5Analysis and Testing of a Contraction-And Micromixer for Micromilled Microfluidics(Springer Heidelberg, 2017) Yildirim, Ender; 31835In this paper, numerical analysis and experimental investigation of a micromixer, which was specifically designed for microfluidic devices fabricated by micromilling, is presented. The mixer is composed of series of contractions and expansions in zigzag arrangement along a mixing channel. Mixers, fabricated by micromilling on polymethylmethacrylate (PMMA), were tested with %0.1 Ponceau 4R red food dye solution and distilled water. According to experiment results, over 70% mixing efficiency could be obtained for the flows with Reynolds number (Re) greater than 40. It was also numerically shown that by increasing the number of successive contractions and expansions, it could be possible to achieve over 80% mixing efficiency when Re = 55 for the species with diffusion coefficient of 5 x 10(-9) m(2)/s. Although the micromixer was specifically designed for micromilling, it is expected that the mixer can be useful in any microfluidic device fabricated by any other technique.Article Citation - WoS: 7Citation - Scopus: 8Analysis of Heat Transfer Enhancement of Passive Methods in Tubes With Machine Learning(Sage Publications Ltd, 2024) Ayli, Ece; Turkoglu, Hasmet; Yapici, Ekin Ozgirgin; 31329; 265836; 12941This study investigates the efficacy of machine learning techniques and correlation methods for predicting heat transfer performance in a dimpled tube under varying flow conditions, including the presence of nanoparticles. A comprehensive numerical analysis involving 120 cases was conducted to obtain Nusselt numbers and friction factors, considering different dimple depths and velocities for both pure water and water-Al2O3 nanofluid at 1%, 2%, and 3% volume concentrations. Utilizing the data acquired from the numerical simulations, a correlation equation, SVM ANN architectures were developed. The predictive capabilities of the statistical approach, ANN, and SVM models for Nusselt number distribution and friction factor were meticulously assessed through mean average percentage error (MAPE) and correlation coefficients (R2). The research findings reveal that machine learning techniques offer a highly effective approach for accurately predicting heat transfer performance in a dimpled tube, with results closely aligned with Computational Fluid Dynamics (CFD) simulations. Particularly noteworthy is the superior performance of the ANN model, demonstrating the most precise predictions with an error rate of 2.54% and an impressive R2 value of 0.9978 for Nusselt number prediction. In comparison, the regression model achieved an average error rate of 6.14% with an R2 value of 0.8623, and the SVM model yielded an RMSE value of 2.984% with an R2 value of 0.9154 for Nusselt number prediction. These outcomes underscore the ANN model's ability to effectively capture complex patterns within the data, resulting in highly accurate predictions. In conclusion, this research showcases the promising potential of machine learning techniques in accurately forecasting heat transfer performance in dimpled tubes. The developed ANN model exhibits notable superiority in predicting Nusselt numbers, making it a valuable tool for enhancing thermal system analyses and engineering design optimization.Article Citation - WoS: 7Citation - Scopus: 10Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy(Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, Samet; 315516The drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.Article Citation - WoS: 5Citation - Scopus: 6Comparison of Different Yield Criteria in Various Deep Drawn Cups(Springer France, 2017) Darendeliler, Haluk; Cogun, Ferah; 36624; 7702The aim of the study is to evaluate the performance of three recent yield criteria namely; BBC2008-8p, Yld2003-8p, Hu2003 through the simulation of the hemispherical, cylindrical and square cup drawing processes by comparing the results with the ones obtained by using the von Mises criterion for the isotropic, kinematic and combined hardening and the Hill'48 criterion. For this purpose, two different sheet materials, SS304 stainless steel and DKP6112 steel, and various punch travels were used in the simulations and experimental phases of this study. The BBC2008-8p, Yld2003-8p and Hu2003 models were implemented to the ABAQUS software through the user material subroutine VUMAT. The thickness strain distributions obtained from the simulations were compared with the experimental results to analyze the validity of the three aforementioned criteria. Compared with the other models, the material behavior in deep drawing cases of this study is better predicted with more recent models, namely BBC2008-8p, Yld2003-8p and Hu2003, which include anisotropy parameters found from uniaxial and biaxial tension tests.Article Citation - WoS: 4Citation - Scopus: 4Comprehensive Elastic Analysis of Functionally Graded Variable Thickness Pressurized Disk(Wiley-v C H verlag Gmbh, 2023) Farukoglu, oemer Can; Korkut, Ihsan; Motameni, AliThis study analytically examines internally pressurized power-law functionally graded variable thickness disk. The power-law consideration is applied to the Young's modulus and the Poisson's ratio of the graded material as well as the radial thickness profile variation of the disk. Under this scheme, the solution yields to different Bessel functions including the first, second, and modified types. Stress and displacement fields are investigated at the elastic limits by operating with these functions. The limits are calculated with the well-known von Mises criteria. Following the analytical modeling, numerical examples are built. Therein the examples, some noteworthy nuances have been achieved. It has been observed that unlike the usual prediction in the literature, constant Poisson's ratio, the effect of variable Poisson's ratio on stresses and displacements is still evident, although not as much as variable Young's modulus and disk geometry. We suggest assigning it as a variable in similar applications to be more precise. Additionally, according to the von Mises criterion, yielding may begin at the inner radius, the outer radius, or both at the same time. Parameters in the simultaneous flow initiation state are critical. These parameters allow the disk to reach the highest elastic limit pressure.Article Citation - WoS: 2Citation - Scopus: 2Critical Decision Making for Rehabilitation of Hydroelectric Power Plants(Taylor & Francis inc, 2023) Westerman, Jerry; Celebioglu, Kutay; Ayli, Ece; Ulucak, Oguzhan; Aradag, Selin; 265836Due to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant's current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m(3)/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m(3)/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.Article Citation - WoS: 16Citation - Scopus: 16Effects of Electrolytic Copper and Copper Alloy Electrodes on Machining Performance in Electrical Discharge Machining (Edm)(Taylor & Francis inc, 2022) Esen, Ziya; Simsek, Ulke; Cogun, Can; 52373; 3837The most important cost element of electric discharge machining (EDM) is the production of tool electrode (shortly electrode). In the EDM process, copper and its alloys are often used as electrode materials. The machining with EDM without increasing the costs can be achieved by selecting the proper electrode with low production and material costs as well as high workpiece material removal rate (MRR), low electrode wear rate (EWR), and relative wear (RW = MRR/EWR). In this study, the EDM performance outputs, namely, MRR and RW were experimentally investigated for electrolytic copper, CuCr1Zr (with and without aging treatment) and CuCo2Be alloy electrode materials for varying machining parameters. The performance outputs were affected by the electrode material and the applied aging treatment. The aged CuCr1Zr alloy electrodes had higher electrical conductivity and better machining performance than the as-received alloy. The CuCo2Be alloy electrodes exhibited moderate to high MRR; however, their RW was the highest. Although the electrolytic copper has moderate MRR performance compared to the investigated alloys, its low cost increased its performance index, making it a more suitable electrode material for EDM applications.Article Citation - WoS: 16Citation - Scopus: 18Electrostatic Energy Harvesting by Droplet-Based Multi-Phase Microfluidics(Springer Heidelberg, 2012) Kulah, Haluk; Yildirim, Ender; 120121This paper presents an energy scavenging technique, merging microfluidics with electrostatic energy harvesting. The method employs droplet-based microflow of two phases with different electrical permittivities, resulting in a capacitance change across the microchannel, to harvest electrical energy. The technique is implemented on 3 mm wide, 1 mm deep minichannels. It is shown that 0.4 nW can be harvested using a single electrode pair, with air and water as the two phases flowing at 1 ml/min. The generated power can be increased significantly by microscale implementation, where the number of electrodes can also be increased for further improvement.Article Citation - WoS: 2Citation - Scopus: 3Experimental and Numerical Investigation of Comparability of Whiplash Sled Test Results(Springer Heidelberg, 2016) Ider, Sitki Kemal; Gokler, Mustafa Ilhan; Ozdemir, Mustafa; 108608; 182869Whiplash-associated neck injuries represent an important health and socioeconomic problem attracting more and more attention of the vehicle safety community. Sled tests are conducted for the dynamic whiplash assessment of seats. However, reproducibility of the initial backset distances and of the sled pulses in every test plays an important role on the comparability of these results. In this study, in order to investigate these aspects, three different driver seat types are considered with three identical and unused samples for each of them, and by strictly following the European New Car Assessment Program (Euro NCAP) whiplash protocol and using the BioRID II dummy, totally nine sled tests are performed. The sled pulses are in general reproduced quite well for different vehicle seats in these tests. However, it is seen that there are differences of up to 5 mm in the initial backset distances recorded for the identical seats of the same type, while this difference increases up to 7 mm among the different seat types considered. Moreover, taking into account the associated tolerances allowed in this protocol, this uncertainty in the backset can even increase up to 10 mm. Based on the previous simulation results obtained by using the finite element model of the BioRID II dummy, linear regression models are constructed, and it is shown that a 10-mm increase in the backset will yield an increase of 2.25, 2.89 and 3.11 m(2)/s(2) in the NICmax values for the low, medium and high severity Euro NCAP pulses, respectively. Being 38, 22 and 31 % of the differences between the associated Euro NCAP higher and lower performance limits, and 68, 96 and 124 % of the differences between the associated Euro NCAP lower performance and capping limits, such increases in the NICmax values are found to bring an unacceptably high uncertainty in the test results, and they can even easily lead to the application of capping, which means giving a zero score for the entire test. In light of these findings, several suggestions are recommended for a more solid whiplash dynamic assessment procedure.Article Experimental and Numerical Investigation of Transition To Turbulent Flow and Heat Transfer Inside a Horizontal Smooth Rectangular Duct Under Uniform Bottom Surface Temperature(Springer, 2013) Onur, Nevzat; Arslan, Kamil; 47465; 53858In this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth rectangular duct both experimentally and numerically investigated. The study was carried out in the transition to turbulence region where Reynolds numbers range from 2,323 to 9,899. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform bottom surface temperature condition. A commercial CFD program Ansys Fluent 12.1 with different turbulent models was used to carry out the numerical study. Based on the present experimental data and three-dimensional numerical solutions, new engineering correlations were presented for the heat transfer and friction coefficients in the form of and , respectively. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. It is seen that there is a good agreement between the present experimental and numerical results. Examination of heat and mass transfer in rectangular cross-sectioned duct for different duct aspect ratio (alpha) was also carried out in this study. Average Nusselt number and average Darcy friction factor were expressed with graphics and correlations for different duct aspect ratios.Article Citation - WoS: 17Citation - Scopus: 20Experimental Investigation of Flow and Heat Transfer in Rectangular Cross-Sectioned Duct With Baffles Mounted on the Bottom Surface With Different Inclination Angles(Springer, 2014) Onur, Nevzat; Arslan, Kamil; 47465; 53858In this study, steady-state forced convection heat transfer and pressure drop characteristics in a horizontal rectangular cross-sectioned duct, baffles mounted on the bottom surface with different inclination angles were investigated experimentally in the Reynolds number range from 1 x 10(3) to 1 x 10(4). The study was performed under turbulent flow conditions. Effects of different baffle inclination angles on flow and heat transfer were studied. Results are also presented in terms of thermal enhancement factor. It is observed that increasing in baffle inclination angle enhances the heat transfer and causes an increase in pressure drop in the duct.Article Citation - WoS: 3Citation - Scopus: 3Experimental Investigation of Laminar Heat Transfer Inside Trapezoidal Duct Having Different Corner Angles(Taylor & Francis inc, 2015) Arslan, K.; Onur, N.; 53858In this study, steady-state laminar forced flow and heat transfer in a horizontal smooth trapezoidal duct having different corner angles were experimentally investigated in the Reynolds number range from 10(2) to 10(3). Flow is hydrodynamically fully developed and thermally developing under a uniform surface temperature condition. Based on the present experimental data of laminar flow in the thermal entrance region, new engineering correlations were presented for the heat transfer and friction coefficients for each corner angle. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. Also, it is observed that average Nusselt number increases while average Darcy friction factor decreases with increasing corner angle of the duct.Article Citation - WoS: 7Citation - Scopus: 9An Experimental Work on Using Conductive Powder-Filled Polymer Composite Cast Material as Tool Electrode in Edm(Springer London Ltd, 2014) Cogun, Can; Yaman, Kemal; 3837This paper introduces the composite tool electrodes made of electrical conductive powder-filled polyester resin matrix material, providing promise for the electrical discharge machining (EDM) process. The dendrite-shaped copper powder, graphite powder, and their mixture were used as conductive fillers. Six different types of composite electrodes, namely, plain copper-polyester, pressed copper-polyester, furnaced copper-polyester, plain copper-graphite-polyester, pressed copper-graphite-polyester, and furnaced copper-graphite-polyester were prepared. It is found experimentally that increasing v (f) improved workpiece material removal rate, tool wear rate, relative wear, and electrical conductivity of electrodes. The pressed copper-polyester electrodes were found to be promising in the ED finishing of workpieces at low machining current settings. The practical applicability of the proposed composite electrodes in the industry was also illustrated.Article Citation - WoS: 2Citation - Scopus: 1Exploring the Potential of Artificial Intelligence Tools in Enhancing the Performance of an Inline Pipe Turbine(Sage Publications Ltd, 2024) Celebioglu, Kutay; Ayli, Ece; Cetinturk, Huseyin; Tascioglu, Yigit; Aradag, Selin; 265836In this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R2 value of 0.99631 was achieved with the appropriate ANN architecture.Article Citation - Scopus: 3Fused Filament Fabrication in Cad Education: a Closed-Loop Approach(Sage Publications inc, 2025) Totuk, Onat Halis; Selvi, Ozguen; Akar, Samet; 315516Integrating low-cost fused filament fabrication 3D printing as a foundation for learning 3D modelling is explored. This method blends traditional computer aided design (CAD) instruction with additive manufacturing possibilities. Experimental results demonstrate increased comprehension speed and reduced learning time. This hands-on approach empowers students by enabling direct engagement with the modelling process. Analogous to reverse engineering, the strategy instructs engineering students from final product to model creation, closing the gap between theory and practice. Incorporating 3D printing bridges this divide, enhancing understanding, creativity and problem-solving. The study underscores technology's influence on learning strategies, aligning with the surge of 3D printing in education. Results link advanced design technology usage to improved student performance, with 3D-printed materials yielding 45% higher grades and 30% faster task completion. This study advocates curricular advancement for design-focused careers through enhanced technology integration and favourable 3D printing model reception.Article Citation - WoS: 2Citation - Scopus: 3Investigation of Aerodynamic and Aeroacoustic Behavior of Bio-Inspired Airfoils With Numerical and Experimental Methods(Sage Publications Ltd, 2024) Kocak, Eyup; Aradag, Selin; Guzey, Kaan; Ayli, Ulku Ece; 265836; 283455This article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (& lambda;) of the serration are varied between 1.25 and 2.5, 20 < & lambda; < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 x 10(5). The angle of attack for each configuration is changed between 4 & DEG; and 16 & DEG;. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8 & DEG;, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12 & DEG; (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.Conference Object Citation - WoS: 12Citation - Scopus: 14Investigation of Surface Roughness in Laser-Assisted Hard Turning of Aisi 4340(Elsevier, 2021) Sadeghi, Mohammad Hossein; Akar, Samet; Khatir, Farzad Ahmadi; 315516In recent years, new materials such as titanium, nickel alloys, and high-strength steels have been widely used in medical, nuclear, and other industries. Since the manufacturing of different components from these materials has always been associated with the machining process, the use of hard machining in their production is unavoidable. The short life of the cutting tool, the poor quality of the machined surfaces, and the long machining time are some of the challenging issues involved in the traditional machining of these materials. Therefore, researchers have investigated new machining techniques to increase the efficiency and quality of produced parts. Thermal-assisted machining, especially laser-assisted machining is one of the promising methods of machining difficult-to-machine materials. However, this process faces some challenges in terms of the achievable surface integrity of the machined surfaces. This research studies the effect of cutting and thermal parameters on the surface roughness in the laser-assisted turning (LAT) process of AISI 4340 hard steel with a hardness of 560 HV. The results illustrated that by selecting a proper combination of process parameters, the damage caused by the heat penetration into the workpiece can be minimized and the advantages of LAT can be benefited from. (C) 2020 The Authors. Published by Elsevier Ltd.Article Citation - WoS: 1Citation - Scopus: 1Kinematic Analysis of Overconstrained Manipulators With Partial Subspaces Using Decomposition Method(Cambridge Univ Press, 2022) Selvi, Ozgun; 46949Overconstrained manipulators in lower subspaces with unique motions can be created and analyzed. However, far too little attention has been paid to creating a generic method for overconstrained manipulators kinematic analysis. This study aimed to evaluate a generic methodology for kinematic analysis of overconstrained parallel manipulators with partial subspaces (OPM-PS) using decomposition to parallel manipulators (PMs) in lower subspaces. The theoretical dimensions of the method are depicted, and the use of partial subspace for overconstrained manipulators is portrayed. The methodology for the decomposition method is described and exemplified by designing and evaluating the method to two overconstrained manipulators with 5 degrees of freedom (DoF) and 3 DoF. The inverse kinematic analysis is detailed with position analysis and Jacobian along with the inverse velocity analysis. The workspace analysis for the manipulators using the methodology is elaborated with numerical results. The results of the study show that OPM-PS can be decomposed into PMs with lower subspace numbers. As imaginary joints are being utilized in the proposed methodology, it will create additional data to consider in the design process of the manipulators. Thus, it becomes more beneficial in design scenarios that include workspace as an objective.
