Makine Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/263
Browse
Browsing Makine Mühendisliği Bölümü Yayın Koleksiyonu by Subject "Airfoil"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods(Sage Publications Ltd, 2024) Aylı, Ülkü Ece; Guzey, Kaan; Ayli, Ulku Ece; Koçak, Eyup; Kocak, Eyup; Aradag, Selin; 265836; 283455; Makine MühendisliğiThis article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (& lambda;) of the serration are varied between 1.25 and 2.5, 20 < & lambda; < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 x 10(5). The angle of attack for each configuration is changed between 4 & DEG; and 16 & DEG;. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8 & DEG;, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12 & DEG; (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.