Makine Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/263
Browse
Browsing Makine Mühendisliği Bölümü Yayın Koleksiyonu by Title
Now showing 1 - 20 of 140
- Results Per Page
- Sort Options
Book Part A fast and optimal static segment scheduling method for FlexRay v3.0(IEEE, 2017) Çakmak, Cumhur; Schmidt, Ece Güran; Schmidt, Klaus Werner; 06.08. Mekatronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiWe propose a novel and fast frame scheduling method for the Static Segment (SS) of the new in-vehicle network standard FlexRay v3.0 in this paper. The proposed methods assigns frames to the SS using the minimum number of time slots based on an Integer Linear Programming formulation. Different. from the existing method in the literature, the proposed method computes optimal frame schedules within miliseconds.Article Citation - WoS: 1Citation - Scopus: 1Analyses of Plate Perforation for Various Penetrator-Target Plate Combinations(Korean Soc Mechanical Engineers, 2022) Akyurek, Turgut; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiIn this study, kinetics and kinematics of perforation process for various penetrator-target plate combinations is analyzed, a methodology in a flow chart format to decide on failure mode, and for each failure mode, an appropriate combined analytical model that requires only common test data is proposed. The proposed methodology and analytical models that are recommended for the related failure mode are assessed by using a huge amount of test data from the literature. The penetrator-target plate configurations cover the penetrators with ogive, conical, hemi-spherical and blunt noses, at different plate thicknesses, and plate thickness to penetrator diameter ratios, made of different metallic materials. Analyzed failure modes include ductile hole enlargement, plugging, dishing, and petal forming. Assessment is done for impact velocities ranging between 215-863 m/s. The estimations based on the proposed flow chart and recommended failure models are in good agreement with the related test data and numerical analysis results.Conference Object Citation - WoS: 12Analysis and Characterization of an Electrostatically Actuated In-Plane Parylene Microvalve(Iop Publishing Ltd, 2011) Kulah, H.; Yildirim, E.; 31835; 120121; 01. Çankaya ÜniversitesiThis paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Microvalves with different diaphragm radii are fabricated using surface micromachining techniques. Pull-in tests are carried out under the no-flow condition with air, oil and water as the working fluid. Test results show that the pull-in occurs around 20 V for 450 mu m radius diaphragms with oil and air. However, it is not possible to observe pull-in up to 100 V (both ac and dc) for the case of water as the working fluid, due to its relatively high dielectric constant and conductivity. The flow tests show that no leakage flow was observed up to 4 kPa inlet pressure under 85 V actuation potential. The leakage ratio becomes 17% at 10 kPa inlet pressure. It is observed that the leakage can be reduced controllably by increasing the actuation potential, enabling the precise control of the flow rate.Article Citation - WoS: 2Citation - Scopus: 2Analysis and Simplified Modelling of Simulation of Tests for Medium-Duty Truck Collision With Twin Anti-Ram Bollards(Taylor & Francis Ltd, 2020) Akyurek, Turgut; 48511; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiAn actual test of medium-duty truck collision with twin anti-ram bollards of steel tube is analysed and simulated with different mass-spring-damper models to study bollard design requirements. Test data is obtained from test report of a medium-duty truck crashed into two fixed twin bollards at speed 78.3 km/h. Maximum impact load and impact height at that time is important in the analysis. Bollard height should be close to or larger than the vehicle's centre of gravity height to avoid climbing of the truck on the bollard. However, increasing impact height yields also increase in failure risk of bollard. Foundation is also critical in success of the bollard in successfully stopping the vehicle. The bollard should be fixed to the frame embedded in the concrete foundation so that the deformation in concrete be minimised. The bollard should be so stiff to stop the vehicle while most of the impact energy is absorbed by the vehicle through deformation of its frontal sections. A single-degree freedom linear mass-spring-damper model is the simplest model, but its results are not in line with test data. Single-degree non-linear model simulates the peak load but not the load history. However, using engine mass instead of truck mass in the single-degree model provides acceptable impact force data for the bollard. Two-degree freedom mass-spring damper linear model seems to simulate both truck's and bollard's deformation in a good manner. Non-linear analysis simulates the collision in a more realistic way, but it requires more data to be determined with testing.Conference Object Analysis and simplified modelling of simulation of tests for mediumduty truck collision with twin antiram bollards(2020) Türkoğlu, Haşmet; 12941; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiArticle Citation - WoS: 5Citation - Scopus: 5Analysis and Testing of a Contraction-And Micromixer for Micromilled Microfluidics(Springer Heidelberg, 2017) Yildirim, Ender; 31835; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiIn this paper, numerical analysis and experimental investigation of a micromixer, which was specifically designed for microfluidic devices fabricated by micromilling, is presented. The mixer is composed of series of contractions and expansions in zigzag arrangement along a mixing channel. Mixers, fabricated by micromilling on polymethylmethacrylate (PMMA), were tested with %0.1 Ponceau 4R red food dye solution and distilled water. According to experiment results, over 70% mixing efficiency could be obtained for the flows with Reynolds number (Re) greater than 40. It was also numerically shown that by increasing the number of successive contractions and expansions, it could be possible to achieve over 80% mixing efficiency when Re = 55 for the species with diffusion coefficient of 5 x 10(-9) m(2)/s. Although the micromixer was specifically designed for micromilling, it is expected that the mixer can be useful in any microfluidic device fabricated by any other technique.Article Citation - WoS: 2Citation - Scopus: 2Analysis of Heat Transfer Enhancement in Tubes With Capsule Dimpled Surfaces and Al2o3-Water Nanofluid(Turkish Soc thermal Sciences Technology, 2022) Ibrahim, Mahmoud Awni A. Haj; Turkoglu, Hasmet; Yapici, Ekin Ozgirgin; 31329; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThis study aims to numerically investigate and evaluate the enhancement of heat transfer by new capsule dimples on tube surfaces for flow of water and Al2O3-water nanofluid with different concentrations, under uniform surface heat flux. The originality of this work lies in combining two passive heat transfer enhancement methods such as geometrical improvements and nanofluids together. Capsule dimples with different depths were considered. Al2O3- water nanofluid was modeled as a single-phase flow based on the mixture properties. The effects of dimple depth and nanoparticle concentrations on Nusselt number, friction factor and performance evaluation criteria (PEC) were studied. Numerical computations were performed using ANSYS Fluent commercial software for 2000-14000 Reynolds number range. It was found that when laminar, transient and fully developed turbulent flow cases are considered, increase in the dimple depth increases the Nusselt number and friction factor for both pure water and Al2O3-water nanofluids cases. Also, the friction factor increases as dimple depth increases. Results show that increase in PEC is more pronounced in the laminar region than in the transition region, it starts to decrease for turbulent flows. For nanofluid, PEC values are considerably higher than pure water cases. The variation of PEC for capsule dimpled tubes are dependent on flow regimes and dimple depths. Increasing the nano particle volume concentration and dimple depth in laminar flows increase the PEC significantly.Article Citation - WoS: 6Citation - Scopus: 7Analysis of Heat Transfer Enhancement of Passive Methods in Tubes With Machine Learning(Sage Publications Ltd, 2024) Ayli, Ece; Turkoglu, Hasmet; Yapici, Ekin Ozgirgin; 31329; 265836; 12941; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThis study investigates the efficacy of machine learning techniques and correlation methods for predicting heat transfer performance in a dimpled tube under varying flow conditions, including the presence of nanoparticles. A comprehensive numerical analysis involving 120 cases was conducted to obtain Nusselt numbers and friction factors, considering different dimple depths and velocities for both pure water and water-Al2O3 nanofluid at 1%, 2%, and 3% volume concentrations. Utilizing the data acquired from the numerical simulations, a correlation equation, SVM ANN architectures were developed. The predictive capabilities of the statistical approach, ANN, and SVM models for Nusselt number distribution and friction factor were meticulously assessed through mean average percentage error (MAPE) and correlation coefficients (R2). The research findings reveal that machine learning techniques offer a highly effective approach for accurately predicting heat transfer performance in a dimpled tube, with results closely aligned with Computational Fluid Dynamics (CFD) simulations. Particularly noteworthy is the superior performance of the ANN model, demonstrating the most precise predictions with an error rate of 2.54% and an impressive R2 value of 0.9978 for Nusselt number prediction. In comparison, the regression model achieved an average error rate of 6.14% with an R2 value of 0.8623, and the SVM model yielded an RMSE value of 2.984% with an R2 value of 0.9154 for Nusselt number prediction. These outcomes underscore the ANN model's ability to effectively capture complex patterns within the data, resulting in highly accurate predictions. In conclusion, this research showcases the promising potential of machine learning techniques in accurately forecasting heat transfer performance in dimpled tubes. The developed ANN model exhibits notable superiority in predicting Nusselt numbers, making it a valuable tool for enhancing thermal system analyses and engineering design optimization.Article Citation - WoS: 5Citation - Scopus: 5Ann and Anfis Performance Prediction Models for Francis Type Turbines(Turkish Soc thermal Sciences Technology, 2020) Aylı, Ülkü Ece; Ayli, Ece; Ulucak, Oguzhan; 265836; Makine Mühendisliği; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiTurbines can be operated under partial loading conditions due to the seasonal precipitation fluctuations and due to the needed electrical demand over time. According to this partial working need, designers generate hill chart diagrams to observe the system behavior under different flow rates and head values. In order to generate a hill chart, several numerical or experimental studies have been performed at different guide vane openings and head values which are very time consuming and expensive. In this study, the efficiency prediction of Francis turbines has been performed with ANN and ANFIS methods under different operating conditions and compared with simulation results. The obtained results indicate that it is possible to obtain a hill chart using ANFIS method instead of a costly experimental or numerical tests. ANN and ANFIS parameters which effect the output, have been optimized with trying 100 different cases. 75% of the numerical data set is used for training and 25 % is used for validation as testing data. To asses and compare the performance of multiple ANN and ANFIS models several statistical indicators have been used. Insight to the performance evaluation, it is seen that ANFIS can predict the efficiency distribution with higher accuracy than the ANN model. The developed ANFIS model predicts the efficiency with 1.41% mean average percentage error and 0.999 R-2 value. To the best of the author's knowledge, this is the first study in the literature that ANN and ANFIS are used in order to predict the efficiency distribution of the turbines at different loading conditions.Article Assessment of the Use of AutoCAD in Mechanical Engineering Technical Drawing Education(2017) Akyürek, Turgut; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiAutoCAD is one of the widely used software tools in engineering education. In this study, a general assessment of AutoCAD for the usage in the mechanical engineering technical drawing education is made. AutoCAD is assessed in terms of the fulfilment of the requirements defined for the main two technical drawing courses. AutoCAD is assessed in terms of its capability in meeting the requirements of the technical drawing courses.Article Citation - WoS: 16Citation - Scopus: 17Bioglass-Polymer Composite Scaffolds for Bone Tissue Regeneration: a Review of Current Trends(Taylor & Francis Ltd, 2024) Motameni, Ali; Cardakli, Ismail Seckin; Gurbuz, Riza; Alshemary, Ammar Z. Z.; Razavi, Mehdi; Farukoglu, Omer Can; 01. Çankaya ÜniversitesiBiocompatible and bioactive composite scaffolds are essential in bone tissue regeneration because of their bioactivity and multilevel porous assemblies. There is a high demand for three-dimensional (3D) scaffolds to treat bone regeneration defects, trauma, and congenital skeletal abnormalities in the current scenario. The main objective of this review is to collect all the possible information concerning synthetic and natural polymer-Bioglass (BG)-based scaffold materials and systematically present them to summarize the importance and need for these materials. The importance of the bone tissue engineering field has been highlighted. Given the current challenges, a comprehensive description of materials fabrication and patterns in scaffold structures is required. This review also includes the most crucial aspect of this study: why are polymeric materials mixed with BG materials? Individually, both BG and polymeric materials lack specific essential characteristics to enhance the scope of these materials. However, preparing the composites of both ensures the researchers that composites of polymers and BG have improved properties that make them versatile materials for bone tissue engineering applications. This study deals with the individual drawbacks of the inorganic BGs, synthetic polymers, and the deficiencies of natural polymers. This study has also included a brief description of various scaffold fabricating techniques. Finally, this study revealed that by manufacturing and developing novel composite materials-scaffolds bearing the capability to repair, heal, and regenerate accidentally damaged or badly injured bones, many occasional problems can be solved in vivo and in vitro. Moreover, this review demonstrated that natural polymeric materials present many advantages over synthetic bone grafts. Yet, synthetic biomaterials have one additional attractive feature, as they have the flexibility to be designed according to the desired demands. These features make them the best choice for a wide range of bone tissue engineering projects for orthopedic surgeons.Conference Object Citation - WoS: 1Citation - Scopus: 2C3: Configurable Can Fd Controller: Architecture, Design and Hardware Implementation(Ieee, 2017) Afsin, Mehmet Ertug; Schmidt, Klaus Werner; Schmidt, Ece Guran; 06.08. Mekatronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiCAN FD (Controller Area Network with Flexible Data Rate) is a new standard which provides a fast data rate while preserving the compatibility with CAN. In this paper, we propose the C-3 (Configurable CAN FD Controller) IP core architecture, which is compatible with the non-ISO CAN FD standard. C-3 supports up to 96 transmit and receive buffers. The transmit buffers are organized as mailboxes with CAN ID prioritization in frame transmission. A separate filter mask that can be configured by the user exists for each receive buffer. Different from existing CAN/CAN FD controllers, the numbers and sizes of transmit and receive buffers of C-3 can be configured at run time. To this end, C-3 enables the best use of a single controller hardware for different applications and enables improving the real-time communication performance. C-3 communicates with the host device over SPI without any specific interface requirements using the protocol that is developed in the scope of this paper. C-3 is implemented on an FPGA Evaluation Board and its functionality is verified at a data rate of 2 Mbps.Article Citation - WoS: 14Citation - Scopus: 20Cavitation in Hydraulic Turbines(Edizioni Ets, 2019) Ayli, Ece; 265836; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiHydroenergy is one of the richest and most useful renewable energy sources in the world. Hydropower is a vital source as it is the clean energy source, sustainable and last but not least it is also cost-effective. One of the most important parameters that affect the performance of the hydraulic machines is the cavitation phenomenon, which is defined as the formation of the vapor bubbles in the liquid through any hydraulic turbine. In this paper, hydraulic machines, cavitation, types of cavitation are briefly described. After theoretical studies, analytical and numerical researches about cavitation in hydraulic machinery are discussed extensively. With those studies which are summarized in this paper covers a lot of ground about cavitation on the other hand further studies are needed about cavitation in hydro turbines. Numerical methods provide sufficient predictions for cavitation. However, numerical results should be verified by experimental measurements and detection methods to decide what intensity and which shape of cavitation is hazardous and vital, where the local pressure is lower than the vapor pressure and at which static pressure cavities start to grow and collapse.Conference Object Chip-Based Immunomagnetic Separation of Human Chorionic Gonadotropin(2016) Ahi, Elçin Ezgi; Gümüştaş, Aysen; Çiftçi, Hakan; Çağlayan, M. Gökhan; Somay Selbes, Yeşim; Çoğun, Ferah; Yıldırım, Ender; Tamer, Uğur; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiBook Part Clean Energy Generation in Residential Green Buildings(inst Engineering Tech-iet, 2019) Aylı, Ülkü Ece; Yapici, Ekin Ozgirgin; Ayli, Ece; Makine Mühendisliği; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiDue to the recent investigations, buildings consume a considerable amount of the electricity, drinking water, global final energy use and as a result are responsible for one third of the global carbon emissions. Therefore, building sector has a key role to reach global energy targets. In this sight, this study draws attention to the sustainable energy performances of green buildings (GBs) and aims towards the GBs concept which includes renewable sources in the construction and lifetime utilization. The remainder of the chapter is subjected as follows: Section 2.1 gives a brief information about residential GBs, and in Section 2.2, certification systems for sustainability ratings of residential GBs are given. This is followed by case studies related to the certification systems in Section 2.3 part. In Section 2.4, GBs incentives are summarized. Section 2.5 provides information about energy demand modelling for residential GBs, and in Section 2.6, clean energy generation systems in residential GBs are described in detail. Finally, outlook for the works that is performed up to now and the outlook for the future is given.Article Citation - WoS: 7Citation - Scopus: 10Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy(Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, Samet; 315516; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.Article Citation - WoS: 3Citation - Scopus: 3A Comparative Study of Effects of Additive Particle Size and Content on Wetting Behavior and Brazing Performance of C/Sic Composite(Springer, 2023) Esen, Ziya; Dericioglu, Arcan F.; Saltik, Simge; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThis study has focused on the influence of size and content of SiC particle incorporation on the wetting behavior of the Ticusil brazing filler alloy and on its brazing performance in C/SiC composite/Ti6Al4V alloy joints. The effect of the size and content of additive SiC particles on the variation of molten brazing filler alloy contact angle was recorded at various brazing time and temperatures. Moreover, the microstructural evolution and mechanical properties of the additive containing C/SiC composite/Ti6Al4V alloy joints produced by the brazing method were investigated. The contact angles in both brazing filler alloys containing nano- and micro-sized SiC particles exhibited a sudden decrease with time during isothermal holding as observed in as-received brazing filler alloys. As the quantity of the SiC particles increased in the brazing alloy, the recorded contact angle values including the final, stable contact angle increased, while the time for the drastic contact angle change also increased remarkably. Compared to as-received counterparts, the addition of 2 wt.% nano-sized SiC and 1 wt.% micro-sized SiC particles improved the shear strength of the joints by 35 and 8%, respectively. Although the recorded contact angle values were close to each other in brazing alloys containing SiC particles with different sizes (37 and 42 degrees for 1 wt.% micro-sized and 2 wt.% nano-sized additions), higher increment was achieved in the mechanical performance of the joints with nano-sized SiC additive due to more homogeneous reinforcement effect of the nanoparticles. The results indicated that the optimum brazing filler alloy contact angle for the highest shear strength is similar to 40 degrees for both nano- and micron-sized additive containing Ticusil filler alloy.Article Citation - WoS: 13Citation - Scopus: 14A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer(Asme, 2022) Ayli, Ece; Turkoglu, Hasmet; Kocak, Eyup; 283455; 265836; 12941; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe aim of this article is to introduce and discuss prediction power of the multiple regression technique, artificial neural network (ANN), and adaptive neuro-fuzzy interface system (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nanofluid flow in a pipe. Water and Al2O3 mixture is used as the nanofluid. Utilizing fluent software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm, and Reynolds number ranging between 7000 and 21,000. Based on the computationally obtained results, a correlation is developed for the Nusselt number using the multiple regression method. Also, based on the computational fluid dynamics results, different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg-Marquardt, Bayesian regularization, scaled conjugate gradient) are tested to find the best ANN architecture. In addition, ANFIS is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor, and membership function (MF) type are optimized. The results obtained from multiple regression correlation, ANN, and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R-2 of 0.9987 for predictions.Book Part Comparison of Different Turbulent Models in Turbulent-Forced Convective Flow and Heat Transfer Inside Rectangular Cross-Sectioned Duct Heating at the Bottom Wall(Springer International Publishing, 2014) Onur, N.; Arslan, K.; 53858; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiIn this study, steady-state turbulent-forced flow and heat transfer in a horizontal smooth rectangular cross-sectioned duct was numerically investigated. The study was carried out in the turbulent flow region where Reynolds number ranges from 1 × 104 to 5 × 104. The flow was developing both hydrodynamically and thermally. The bottom surface of the duct was assumed to be under constant surface temperature. A commercial CFD program Ansys Fluent 12.1 with different turbulent models was used to carry out the numerical study. Different turbulence models (k–ε Standard, k–ε Realizable, k–ε RNG, k–ω Standard and k–ω SST) were used. Based on the present numerical solutions, new engineering correlations were presented for the heat transfer and friction coefficients. The numerical results for different turbulence models were compared with each other and the experimental data available in the literature. It was observed that k–ε turbulence models represented the turbulent flow condition very well for the present study. © Springer International Publishing Switzerland 2014.Article Citation - WoS: 5Citation - Scopus: 6Comparison of Different Yield Criteria in Various Deep Drawn Cups(Springer France, 2017) Darendeliler, Haluk; Cogun, Ferah; 36624; 7702; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiThe aim of the study is to evaluate the performance of three recent yield criteria namely; BBC2008-8p, Yld2003-8p, Hu2003 through the simulation of the hemispherical, cylindrical and square cup drawing processes by comparing the results with the ones obtained by using the von Mises criterion for the isotropic, kinematic and combined hardening and the Hill'48 criterion. For this purpose, two different sheet materials, SS304 stainless steel and DKP6112 steel, and various punch travels were used in the simulations and experimental phases of this study. The BBC2008-8p, Yld2003-8p and Hu2003 models were implemented to the ABAQUS software through the user material subroutine VUMAT. The thickness strain distributions obtained from the simulations were compared with the experimental results to analyze the validity of the three aforementioned criteria. Compared with the other models, the material behavior in deep drawing cases of this study is better predicted with more recent models, namely BBC2008-8p, Yld2003-8p and Hu2003, which include anisotropy parameters found from uniaxial and biaxial tension tests.
