Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Yılmaz, Barış

Loading...
Profile Picture
Name Variants
Job Title
Arş. Gör.
Email Address
Main Affiliation
Elektrik-Elektronik Mühendisliği
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals Report Points

SDG data could not be loaded because of an error. Please refresh the page or try again later.
Scholarly Output

1

Articles

0

Citation Count

0

Supervised Theses

1

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Master Thesis
    Efficient implementation of convolutional neural networks on embedded devices
    (2022) Yılmaz, Barış; Elektrik-Elektronik Mühendisliği
    Yapay zeka alanında, derin evrişimsel sinir ağı modelleri, insan sonuçlarına yakın sonuçlar verebildikleri için çok popülerdir. Uygulamaya bağlı olarak, bu derin öğrenme modelleri çok basit ve küçük olabilir, ancak aynı zamanda çok karmaşık ve büyük de olabilir. Bu nedenle, bu modelleri uygulayan gömülü sistemlerin performansı zayıf ve olanaksız olabilir. Bu tez, çeşitli yöntemlerin kullanılmasıyla, performansta önemli bir kayıp olmadan derin evrişimsel sinir mimarisi verimliliğini iyileştirmeyi amaçlamaktadır. Bu amaçla, ilk olarak katman aktivasyonlarında öznitelik boyutu küçültmelerinden yararlanıyoruz. Özellik boyut küçültme için Temel Bileşen Analizi ve Select-K-Best fonksiyonu gibi yöntemler kullanıyoruz. Sonrasında, niceliksel farkındalık eğitimli ikili derin evrişimli sinir ağı modelini daha verimli hale getirmek için, bir karar verme mekanizması olarak derin öğrenme modelinin tam bağlantılı katmanlarını değiştirerek "Düzenli Pozitif ve Negatif Çıkarım" algoritmasını da kullanıyoruz. Bu tezin nihai amacı, bu yöntemlerin önemli bir performans kaybı olmadan modellerimizi verimli hale getirip getiremeyeceğini ve ikili nicemlenmiş derin evrişimsel sinir ağının verimliliğini daha da artırıp artıramayacağımızı gözlemlemektir.