Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The impact of feature types, classifiers, and data balancing techniques on software vulnerability prediction models

dc.contributor.author Kaya, Aydın
dc.contributor.author Keçeli, Ali Seydi
dc.contributor.author Çatal, Çağatay
dc.contributor.author Tekinerdoğan, Bedir
dc.contributor.authorID 3530 tr_TR
dc.date.accessioned 2021-06-10T12:11:12Z
dc.date.available 2021-06-10T12:11:12Z
dc.date.issued 2019
dc.description.abstract Software vulnerabilities form an increasing security risk for software systems, that might be exploited to attack and harm the system. Some of the security vulnerabilities can be detected by static analysis tools and penetration testing, but usually, these suffer from relatively high false positive rates. Software vulnerability prediction (SVP) models can be used to categorize software components into vulnerable and neutral components before the software testing phase and likewise increase the efficiency and effectiveness of the overall verification process. The performance of a vulnerability prediction model is usually affected by the adopted classification algorithm, the adopted features, and data balancing approaches. In this study, we empirically investigate the effect of these factors on the performance of SVP models. Our experiments consist of four data balancing methods, seven classification algorithms, and three feature types. The experimental results show that data balancing methods are effective for highly unbalanced datasets, text-based features are more useful, and ensemble-based classifiers provide mostly better results. For smaller datasets, Random Forest algorithm provides the best performance and for the larger datasets, RusboostTree achieves better performance. en_US
dc.description.publishedMonth 9
dc.identifier.citation Kaya, Aydın...et al (2019). "The impact of feature types, classifiers, and data balancing techniques on software vulnerability prediction models", Journal of Software: Evolution and Process, Vol. 31, No. 9. en_US
dc.identifier.doi 10.1002/smr.2164
dc.identifier.issn 2047-7473
dc.identifier.issn 2047-7481
dc.identifier.uri https://hdl.handle.net/20.500.12416/4762
dc.language.iso en en_US
dc.relation.ispartof Journal of Software: Evolution and Process en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Classification Models en_US
dc.subject Data Sampling en_US
dc.subject Imbalance Datasets en_US
dc.subject Machine Learning en_US
dc.subject Performance Analysis en_US
dc.subject Software Vulnerability Prediction en_US
dc.title The impact of feature types, classifiers, and data balancing techniques on software vulnerability prediction models tr_TR
dc.title The Impact of Feature Types, Classifiers, and Data Balancing Techniques on Software Vulnerability Prediction Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.description.department Çankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.issue 9 en_US
gdc.description.volume 31 en_US
gdc.identifier.openalex W2941783328
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.0309593E-9
gdc.oaire.isgreen false
gdc.oaire.keywords machine learning
gdc.oaire.keywords data sampling
gdc.oaire.keywords classification models
gdc.oaire.keywords software vulnerability prediction
gdc.oaire.keywords performance analysis
gdc.oaire.keywords imbalance datasets
gdc.oaire.popularity 5.3189577E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 1.82005019
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 5
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 39
gdc.plumx.scopuscites 10
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: