Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Metaheuristic-Guided Machine Learning Approach for Concrete Strength Prediction With High Mix Design Variability Using Ultrasonic Pulse Velocity Data

dc.contributor.author Selcuk, S.
dc.contributor.author Tang, P.
dc.date.accessioned 2024-05-24T11:28:34Z
dc.date.accessioned 2025-09-18T13:26:00Z
dc.date.available 2024-05-24T11:28:34Z
dc.date.available 2025-09-18T13:26:00Z
dc.date.issued 2023
dc.description Selcuk, Seda/0000-0002-2046-3841; Tang, Pingbo/0000-0002-4910-1326 en_US
dc.description.abstract Assessment of concrete strength in existing structures is a common engineering problem. Several attempts in the literature showed the potential of ML methods for predicting concrete strength using concrete properties and NDT values as inputs. However, almost all such ML efforts based on NDT data trained models to predict concrete strength for a specific concrete mix design. We trained a global ML-based model that can predict concrete strength for a wide range of concrete types. This study uses data with high variability for training a metaheuristic-guided ANN model that can cover most concrete mixes used in practice. We put together a dataset that has large variations of mix design components. Training an ANN model using this dataset introduced significant test errors as expected. We optimized hyperparameters, architecture of the ANN model and performed feature selection using genetic algorithm. The proposed model reduces test errors from 9.3 MPa to 4.8 MPa. en_US
dc.description.publishedMonth 10
dc.description.sponsorship Scientific and Technological Research Council of Turkey 2219-International Postdoctoral Research Fellowship Program for Turkish Citizens [2018/2, 1059B191802214] en_US
dc.description.sponsorship This work was supported through The Scientific and Technological Research Council of Turkey 2219-International Postdoctoral Research Fellowship Program for Turkish Citizens [grant number 2018/2, 1059B191802214]. en_US
dc.identifier.citation S., Selçuk; P., Tang (2023). "A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data", Developments in the Built Environment, Vol. 15. en_US
dc.identifier.doi 10.1016/j.dibe.2023.100220
dc.identifier.issn 2666-1659
dc.identifier.scopus 2-s2.0-85172695177
dc.identifier.uri https://doi.org/10.1016/j.dibe.2023.100220
dc.identifier.uri https://hdl.handle.net/123456789/12471
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Ann en_US
dc.subject Ultrasonic Pulse Velocity en_US
dc.subject Deep Learning en_US
dc.subject Non Destructive Testing en_US
dc.subject Concrete Strength Assessment en_US
dc.subject Metaheuristic Algorithms en_US
dc.title A Metaheuristic-Guided Machine Learning Approach for Concrete Strength Prediction With High Mix Design Variability Using Ultrasonic Pulse Velocity Data en_US
dc.title A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Selcuk, Seda/0000-0002-2046-3841
gdc.author.id Tang, Pingbo/0000-0002-4910-1326
gdc.author.institutional Selçuk, Seda
gdc.author.scopusid 58622787300
gdc.author.scopusid 24170157800
gdc.author.wosid Selcuk, Seda/L-7692-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Selcuk, S.] Cankaya Univ, Civil Engn Dept NA17, Main Campus, Ankara, Turkiye; [Tang, P.] Carnegie Mellon Univ, Civil & Environm Engn Dept, Porter Hall,123F, Pittsburgh, PA 15213 USA en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4386171697
gdc.identifier.wos WOS:001079956100001
gdc.openalex.fwci 2.04506984
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 4
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 52
gdc.plumx.newscount 2
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.wos.citedcount 7
relation.isAuthorOfPublication becadbd0-e6b5-44f8-8cf2-c45c211b4c3d
relation.isAuthorOfPublication.latestForDiscovery becadbd0-e6b5-44f8-8cf2-c45c211b4c3d
relation.isOrgUnitOfPublication 77a9f192-0d56-4f8e-adf2-a1c91a7124c9
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 77a9f192-0d56-4f8e-adf2-a1c91a7124c9

Files