Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analytical Properties of the Hurwitz-Lerch Zeta Function

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases.

Description

Usman, Talha/0000-0002-4208-6784; Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Nadeem, Raghib/0000-0001-7013-4248

Keywords

Generalized, Generating Functions, Rodrigues Formula, 33C05, 33C45, 33C47, 33C90

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Nadeem, Raghib...et al. (2020). "Analytical properties of the Hurwitz-Lerch zeta function", Advances in Difference Equations, Vol. 2020, No. 1.

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
5

Source

Volume

2020

Issue

1

Start Page

End Page

PlumX Metrics
Citations

Scopus : 5

Captures

Mendeley Readers : 3

SCOPUS™ Citations

5

checked on Nov 25, 2025

Web of Science™ Citations

4

checked on Nov 25, 2025

Page Views

2

checked on Nov 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.80878579

Sustainable Development Goals

SDG data is not available