Analytical Properties of the Hurwitz-Lerch Zeta Function
| dc.contributor.author | Usman, Talha | |
| dc.contributor.author | Nisar, Kottakkaran Sooppy | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Nadeem, Raghib | |
| dc.date.accessioned | 2022-03-22T10:41:28Z | |
| dc.date.accessioned | 2025-09-18T12:05:22Z | |
| dc.date.available | 2022-03-22T10:41:28Z | |
| dc.date.available | 2025-09-18T12:05:22Z | |
| dc.date.issued | 2020 | |
| dc.description | Usman, Talha/0000-0002-4208-6784; Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Nadeem, Raghib/0000-0001-7013-4248 | en_US |
| dc.description.abstract | In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases. | en_US |
| dc.identifier.citation | Nadeem, Raghib...et al. (2020). "Analytical properties of the Hurwitz-Lerch zeta function", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02924-2 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85090398815 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02924-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/10578 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Generalized | en_US |
| dc.subject | Generating Functions | en_US |
| dc.subject | Rodrigues Formula | en_US |
| dc.subject | 33C05 | en_US |
| dc.subject | 33C45 | en_US |
| dc.subject | 33C47 | en_US |
| dc.subject | 33C90 | en_US |
| dc.title | Analytical Properties of the Hurwitz-Lerch Zeta Function | en_US |
| dc.title | Analytical properties of the Hurwitz-Lerch zeta function | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Usman, Talha/0000-0002-4208-6784 | |
| gdc.author.id | Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320 | |
| gdc.author.id | Nadeem, Raghib/0000-0001-7013-4248 | |
| gdc.author.scopusid | 57212102383 | |
| gdc.author.scopusid | 57191093659 | |
| gdc.author.scopusid | 56715663200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Nadeem, Raghib/Aad-6777-2021 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Usman, Talha/J-1329-2019 | |
| gdc.author.wosid | Nisar, Prof. Kottakkaran Sooppy/F-7559-2015 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nadeem, Raghib] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India; [Usman, Talha] Lingayas Vidyapeeth, Sch Basic & Appl Sci, Dept Math, Faridabad 121002, Haryana, India; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawaser 11991, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3083689887 | |
| gdc.identifier.wos | WOS:000569788900003 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.022238E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Generating functions | |
| gdc.oaire.keywords | Generalized | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | Rodrigues formula | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Other special orthogonal polynomials and functions | |
| gdc.oaire.keywords | Hurwitz and Lerch zeta functions | |
| gdc.oaire.keywords | generalized | |
| gdc.oaire.keywords | Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) | |
| gdc.oaire.keywords | Classical hypergeometric functions, \({}_2F_1\) | |
| gdc.oaire.keywords | Applications of hypergeometric functions | |
| gdc.oaire.keywords | generating functions | |
| gdc.oaire.popularity | 5.9674417E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.80878579 | |
| gdc.openalex.normalizedpercentile | 0.73 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.publishedmonth | 9 | |
| gdc.scopus.citedcount | 5 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
