Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analytical Properties of the Hurwitz-Lerch Zeta Function

dc.contributor.author Usman, Talha
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nadeem, Raghib
dc.date.accessioned 2022-03-22T10:41:28Z
dc.date.accessioned 2025-09-18T12:05:22Z
dc.date.available 2022-03-22T10:41:28Z
dc.date.available 2025-09-18T12:05:22Z
dc.date.issued 2020
dc.description Usman, Talha/0000-0002-4208-6784; Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Nadeem, Raghib/0000-0001-7013-4248 en_US
dc.description.abstract In the present paper, we aim to extend the Hurwitz-Lerch zeta function Phi delta,sigma;gamma(xi ,s,upsilon ;p) involving the extension of the beta function (Choi et al. in Honam Math. J. 36(2):357-385, 2014). We also study the basic properties of this extended Hurwitz-Lerch zeta function which comprises various integral formulas, a derivative formula, the Mellin transform, and the generating relation. The fractional kinetic equation for an extended Hurwitz-Lerch zeta function is also obtained from an application point of view. Furthermore, we obtain certain interesting relations in the form of particular cases. en_US
dc.identifier.citation Nadeem, Raghib...et al. (2020). "Analytical properties of the Hurwitz-Lerch zeta function", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02924-2
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85090398815
dc.identifier.uri https://doi.org/10.1186/s13662-020-02924-2
dc.identifier.uri https://hdl.handle.net/20.500.12416/10578
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Generalized en_US
dc.subject Generating Functions en_US
dc.subject Rodrigues Formula en_US
dc.subject 33C05 en_US
dc.subject 33C45 en_US
dc.subject 33C47 en_US
dc.subject 33C90 en_US
dc.title Analytical Properties of the Hurwitz-Lerch Zeta Function en_US
dc.title Analytical properties of the Hurwitz-Lerch zeta function tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Usman, Talha/0000-0002-4208-6784
gdc.author.id Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
gdc.author.id Nadeem, Raghib/0000-0001-7013-4248
gdc.author.scopusid 57212102383
gdc.author.scopusid 57191093659
gdc.author.scopusid 56715663200
gdc.author.scopusid 7005872966
gdc.author.wosid Nadeem, Raghib/Aad-6777-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Usman, Talha/J-1329-2019
gdc.author.wosid Nisar, Prof. Kottakkaran Sooppy/F-7559-2015
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nadeem, Raghib] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India; [Usman, Talha] Lingayas Vidyapeeth, Sch Basic & Appl Sci, Dept Math, Faridabad 121002, Haryana, India; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawaser 11991, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2020 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3083689887
gdc.identifier.wos WOS:000569788900003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.022238E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Generating functions
gdc.oaire.keywords Generalized
gdc.oaire.keywords QA1-939
gdc.oaire.keywords Rodrigues formula
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Other special orthogonal polynomials and functions
gdc.oaire.keywords Hurwitz and Lerch zeta functions
gdc.oaire.keywords generalized
gdc.oaire.keywords Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
gdc.oaire.keywords Classical hypergeometric functions, \({}_2F_1\)
gdc.oaire.keywords Applications of hypergeometric functions
gdc.oaire.keywords generating functions
gdc.oaire.popularity 5.9674417E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.80878579
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 5
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 5
gdc.publishedmonth 9
gdc.scopus.citedcount 5
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 4
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files