Positive solutions to fractional boundary value problems with nonlinear boundary conditions
Date
2013
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We consider a system of boundary value problems for fractional differential equation given by D0+β φp (D 0+αu) (t) = λ1a1 (t) f1 (u (t), v (t)), t ∈ (0,1), D0+β φp (D0+αv) (t) = λ 2a2 (t) f2 (u (t), v (t)), t ∈ (0,1), where 1 < α, β ≤ 2, 2 < α + β ≤ 4, λ1,λ2 are eigenvalues, subject either to the boundary conditions D0+α u (0) = D 0+α u (1) = 0, u (0) = 0, D0+ β1 u (1) - Σi=1m-2 a1i D0+β1 u (χ1i) = 0, D0+ α v (0) = D0+α v (1) = 0, v (0) = 0, D0+β1 v (1) - Σi = 1 m-2 a2i D0+β1 v (χ2i) = 0 or D0+α u (0) = D 0+α u (1) = 0, u (0) = 0, D0+ β1 u (1) - Σi = 1m 2 a1i D0+β1 u (χ1i) = ψ1 (u), D0+α v (0) = D0+α v (1) = 0, v (0) = 0, D0+β1 v (1) - Σ i = 1 m-2 a2i D0+β1 v (χ2i) = ψ2 (v), where 0 < β1 < 1, α - β1- 1 ≥ 0 and ψ1, ψ2: C ([ 0,1 ]) → [ 0, ∞) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.
Description
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh (2013). "Positive solutions to fractional boundary value problems with nonlinear boundary conditions", Abstract and Applied Analysis, Vol. 2013.
WoS Q
Scopus Q
Source
Abstract and Applied Analysis
Volume
2013