Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Positive solutions to fractional boundary value problems with nonlinear boundary conditions

dc.contributor.author Nyamoradi, Nemat
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Bashiri, Tahereh
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2022-12-06T10:24:07Z
dc.date.available 2022-12-06T10:24:07Z
dc.date.issued 2013
dc.description.abstract We consider a system of boundary value problems for fractional differential equation given by D0+β φp (D 0+αu) (t) = λ1a1 (t) f1 (u (t), v (t)), t ∈ (0,1), D0+β φp (D0+αv) (t) = λ 2a2 (t) f2 (u (t), v (t)), t ∈ (0,1), where 1 < α, β ≤ 2, 2 < α + β ≤ 4, λ1,λ2 are eigenvalues, subject either to the boundary conditions D0+α u (0) = D 0+α u (1) = 0, u (0) = 0, D0+ β1 u (1) - Σi=1m-2 a1i D0+β1 u (χ1i) = 0, D0+ α v (0) = D0+α v (1) = 0, v (0) = 0, D0+β1 v (1) - Σi = 1 m-2 a2i D0+β1 v (χ2i) = 0 or D0+α u (0) = D 0+α u (1) = 0, u (0) = 0, D0+ β1 u (1) - Σi = 1m 2 a1i D0+β1 u (χ1i) = ψ1 (u), D0+α v (0) = D0+α v (1) = 0, v (0) = 0, D0+β1 v (1) - Σ i = 1 m-2 a2i D0+β1 v (χ2i) = ψ2 (v), where 0 < β1 < 1, α - β1- 1 ≥ 0 and ψ1, ψ2: C ([ 0,1 ]) → [ 0, ∞) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results. en_US
dc.identifier.citation Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh (2013). "Positive solutions to fractional boundary value problems with nonlinear boundary conditions", Abstract and Applied Analysis, Vol. 2013. en_US
dc.identifier.doi 10.1155/2013/579740
dc.identifier.issn 1687-0409
dc.identifier.issn 1085-3375
dc.identifier.uri https://hdl.handle.net/20.500.12416/5931
dc.language.iso en en_US
dc.relation.ispartof Abstract and Applied Analysis en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Positive solutions to fractional boundary value problems with nonlinear boundary conditions tr_TR
dc.title Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü en_US
gdc.description.endpage 20
gdc.description.startpage 1
gdc.description.volume 2013 en_US
gdc.identifier.openalex W2103820182
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0017953E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords Fractional Differential Equations
gdc.oaire.keywords Time-Fractional Diffusion Equation
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Computer science
gdc.oaire.keywords Algorithm
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Boundary Value Problems
gdc.oaire.keywords Numerical Methods for Singularly Perturbed Problems
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Functional Differential Equations
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.popularity 7.6770185E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 3.15233954
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 7
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: