Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Classification of Low Probability of Intercept Radar Waveforms Using Gabor Wavelets

dc.contributor.author Ergezer, Halit
dc.contributor.authorID 29339 tr_TR
dc.contributor.other 06.08. Mekatronik Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-03-24T12:05:23Z
dc.date.accessioned 2025-09-18T14:10:28Z
dc.date.available 2022-03-24T12:05:23Z
dc.date.available 2025-09-18T14:10:28Z
dc.date.issued 2021
dc.description.abstract Low Probability of Intercept (LPI Radar) is a class of radar with specific technical characteristics that make it very difficult to intercept with electronic support systems and radar warning receivers. Because of their properties as low power, variable frequency, wide bandwidth, LPI radar waveforms are difficult to intercept by ESM systems. In recent years, studies on the classification of waveforms used by these types of radar have been accelerated. In this study, Time-Frequency Images (TFI) has been obtained from the LPI radars waveforms by using Choi-Williams Distribution method. From these images, feature vectors have been generated using Gabor Wavelet transform. In contrast to many methods in the literature, waveform classification has been performed by directly comparing the feature vectors obtained without using any machine learning method. With the method we propose, classification accuracies were obtained at intervals of 2 dB between -20 dB and 10 dB and performed at reasonable classification accuracy rates up to -8 dB SNR value. Better results than the best reported in the literature were obtained for some signal types. The results obtained for all waveform types are given in comparison with the results of the existing methods in the literature. en_US
dc.identifier.citation Ergezer, Halit 82021). "Classification of low probability of intercept radar waveforms using gabor wavelets", Journal of the Faculty of Engineering and Architecture of Gazi University, Vol. 36, No. 4, pp. 2025-2035. en_US
dc.identifier.doi 10.17341/gazimmfd.782311
dc.identifier.issn 1300-1884
dc.identifier.issn 1304-4915
dc.identifier.scopus 2-s2.0-85117772530
dc.identifier.uri https://doi.org/10.17341/gazimmfd.782311
dc.identifier.uri https://hdl.handle.net/20.500.12416/13693
dc.language.iso tr en_US
dc.publisher Gazi Univ, Fac Engineering Architecture en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Lpi Radar en_US
dc.subject Waveform Classification en_US
dc.subject Gabor Wavelet Transform en_US
dc.subject Electronic Support Systems en_US
dc.title Classification of Low Probability of Intercept Radar Waveforms Using Gabor Wavelets en_US
dc.title Classification of low probability of intercept radar waveforms using gabor wavelets tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ergezer, Halit
gdc.author.scopusid 8375807400
gdc.author.wosid Ergezer, Halit/S-6502-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ergezer, Halit] Cankaya Univ, Fac Engn, Mechatron Engn Dept, TR-06790 Ankara, Turkey en_US
gdc.description.endpage 2035 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2025 en_US
gdc.description.volume 36 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W3196164068
gdc.identifier.trdizinid 494888
gdc.identifier.wos WOS:000692521900019
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.12
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isAuthorOfPublication.latestForDiscovery e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files