Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Nonnormal Regression. I. Skew Distributions

No Thumbnail Available

Date

2001

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In a linear regression model of the type y = thetaX + e, it is often assumed that the random error e is normally distributed. In numerous situations, e.g., when y measures life times or reaction times, e typically has a skew distribution. We consider two important families of skew distributions, (a) Weibull with support IR: (0, infinity) on the real line, and (b) generalised logistic with support IR: (-infinity, infinity). Since the maximum likelihood estimators are intractable in these situations, we derive modified likelihood estimators which have explicit algebraic forms and are, therefore, easy to compute. We show that these estimators are remarkably efficient, and robust. We develop hypothesis testing procedures and give a real life example.

Description

Keywords

Robustness, Maximum Likelihood, Modified Maximum Likelihood, Least Squares, Weibull, Generalised Logistic

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Islam, MQ; Tiku, ML; Yıldırım F., "Nonnormal regression. i. skew distributions" Communications In Statistics-Theory And Methods, Vol.30, No.6, pp.993-1020, (2001).

WoS Q

Q4

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
28

Source

Volume

30

Issue

6

Start Page

993

End Page

1020
PlumX Metrics
Citations

CrossRef : 16

Scopus : 29

Captures

Mendeley Readers : 6

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.83927282

Sustainable Development Goals