Nonnormal Regression. I. Skew Distributions
| dc.contributor.author | Islam, MQ | |
| dc.contributor.author | Tiku, ML | |
| dc.contributor.author | Yildirim, F | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-04-09T20:36:21Z | |
| dc.date.accessioned | 2025-09-18T12:08:46Z | |
| dc.date.available | 2020-04-09T20:36:21Z | |
| dc.date.available | 2025-09-18T12:08:46Z | |
| dc.date.issued | 2001 | |
| dc.description.abstract | In a linear regression model of the type y = thetaX + e, it is often assumed that the random error e is normally distributed. In numerous situations, e.g., when y measures life times or reaction times, e typically has a skew distribution. We consider two important families of skew distributions, (a) Weibull with support IR: (0, infinity) on the real line, and (b) generalised logistic with support IR: (-infinity, infinity). Since the maximum likelihood estimators are intractable in these situations, we derive modified likelihood estimators which have explicit algebraic forms and are, therefore, easy to compute. We show that these estimators are remarkably efficient, and robust. We develop hypothesis testing procedures and give a real life example. | en_US |
| dc.identifier.citation | Islam, MQ; Tiku, ML; Yıldırım F., "Nonnormal regression. i. skew distributions" Communications In Statistics-Theory And Methods, Vol.30, No.6, pp.993-1020, (2001). | en_US |
| dc.identifier.doi | 10.1081/STA-100104347 | |
| dc.identifier.issn | 0361-0926 | |
| dc.identifier.issn | 1532-415X | |
| dc.identifier.scopus | 2-s2.0-0034869541 | |
| dc.identifier.uri | https://doi.org/10.1081/STA-100104347 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11215 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis inc | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Robustness | en_US |
| dc.subject | Maximum Likelihood | en_US |
| dc.subject | Modified Maximum Likelihood | en_US |
| dc.subject | Least Squares | en_US |
| dc.subject | Weibull | en_US |
| dc.subject | Generalised Logistic | en_US |
| dc.title | Nonnormal Regression. I. Skew Distributions | en_US |
| dc.title | Nonnormal regression. i. skew distributions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Islam, M.Qamarul | |
| gdc.author.scopusid | 55547120879 | |
| gdc.author.scopusid | 7005739359 | |
| gdc.author.scopusid | 6602194368 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey; McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada; Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey | en_US |
| gdc.description.endpage | 1020 | en_US |
| gdc.description.issue | 6 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 993 | en_US |
| gdc.description.volume | 30 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W2006406494 | |
| gdc.identifier.wos | WOS:000170235000001 | |
| gdc.openalex.fwci | 1.83927282 | |
| gdc.openalex.normalizedpercentile | 0.85 | |
| gdc.opencitations.count | 28 | |
| gdc.plumx.crossrefcites | 16 | |
| gdc.plumx.mendeley | 6 | |
| gdc.plumx.scopuscites | 29 | |
| gdc.scopus.citedcount | 29 | |
| gdc.wos.citedcount | 27 | |
| relation.isAuthorOfPublication | 5aa299c8-3d70-498f-8e3b-ec8423f212d2 | |
| relation.isAuthorOfPublication.latestForDiscovery | 5aa299c8-3d70-498f-8e3b-ec8423f212d2 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |