Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Nonnormal Regression. I. Skew Distributions

dc.contributor.author Islam, MQ
dc.contributor.author Tiku, ML
dc.contributor.author Yildirim, F
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-04-09T20:36:21Z
dc.date.accessioned 2025-09-18T12:08:46Z
dc.date.available 2020-04-09T20:36:21Z
dc.date.available 2025-09-18T12:08:46Z
dc.date.issued 2001
dc.description.abstract In a linear regression model of the type y = thetaX + e, it is often assumed that the random error e is normally distributed. In numerous situations, e.g., when y measures life times or reaction times, e typically has a skew distribution. We consider two important families of skew distributions, (a) Weibull with support IR: (0, infinity) on the real line, and (b) generalised logistic with support IR: (-infinity, infinity). Since the maximum likelihood estimators are intractable in these situations, we derive modified likelihood estimators which have explicit algebraic forms and are, therefore, easy to compute. We show that these estimators are remarkably efficient, and robust. We develop hypothesis testing procedures and give a real life example. en_US
dc.identifier.citation Islam, MQ; Tiku, ML; Yıldırım F., "Nonnormal regression. i. skew distributions" Communications In Statistics-Theory And Methods, Vol.30, No.6, pp.993-1020, (2001). en_US
dc.identifier.doi 10.1081/STA-100104347
dc.identifier.issn 0361-0926
dc.identifier.issn 1532-415X
dc.identifier.scopus 2-s2.0-0034869541
dc.identifier.uri https://doi.org/10.1081/STA-100104347
dc.identifier.uri https://hdl.handle.net/123456789/11215
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Robustness en_US
dc.subject Maximum Likelihood en_US
dc.subject Modified Maximum Likelihood en_US
dc.subject Least Squares en_US
dc.subject Weibull en_US
dc.subject Generalised Logistic en_US
dc.title Nonnormal Regression. I. Skew Distributions en_US
dc.title Nonnormal regression. i. skew distributions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Islam, M.Qamarul
gdc.author.scopusid 55547120879
gdc.author.scopusid 7005739359
gdc.author.scopusid 6602194368
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey; McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada; Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey en_US
gdc.description.endpage 1020 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 993 en_US
gdc.description.volume 30 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W2006406494
gdc.identifier.wos WOS:000170235000001
gdc.openalex.fwci 1.83927282
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 28
gdc.plumx.crossrefcites 16
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 29
gdc.scopus.citedcount 29
gdc.wos.citedcount 27
relation.isAuthorOfPublication 5aa299c8-3d70-498f-8e3b-ec8423f212d2
relation.isAuthorOfPublication.latestForDiscovery 5aa299c8-3d70-498f-8e3b-ec8423f212d2
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files