Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Türkçe Kısa Metinlerde Duruş Tespiti: Rusya-ukrayna Savaşı Örneği

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Bilgisayar Mühendisliği
Bölümümüzün temel amacı iş yaşamındaki kapsamlı problemlere profesyonel sorumluluk ve etik bilinciyle, bireysel ve takım içinde, teknolojik değişimlere hızla uyum sağlayarak çözüm geliştirebilen ve uygulayabilen, bilgisayar bilimleri ve mühendisliği alanında akademik ve ileri düzey araştırma ve geliştirme yapabilen, yenilikçi ve girişimci bir vizyonla ulusal ve uluslararası düzeyde yeni teknolojilerin geliştirilmesine ve mevcutların iyileştirilmesine katkı verebilen, mesleklerinde saygı duyulan mezunlar yetiştirmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Son yıllarda sosyal medya, çeşitli konulardaki halkın görüşlerini anlamak için önemli bir bilgi kaynağı haline gelmiştir. Bu nedenle, bu verilerden otomatik bilgi çıkarmak öneminin arttığı bir alan haline gelmiştir. Doğal dil işleme alanının alt görevlerinden biri olan görüş belirleme, otomatik bilgi çıkarma için kritik bir konudur. Duruş tespiti, kullanıcının belirli bir konu, olay veya kişi hakkındaki tutumunu otomatik olarak belirler. Bu çalışmada, Rusya-Ukrayna Savaşı'na yönelik sosyal medya kullanıcılarının tutumlarını belirleme görevine odaklanan Türkçe etiketli bir veri kümesi oluşturulmuş ve bu veri kümesinde çeşitli makine öğrenimi yöntemleri değerlendirilmiştir. Bu çalışma için 8215 tweet Twitter'dan toplandı ve temizlendi. Veri kümesi daha sonra Rusya ve Ukrayna olmak üzere iki hedefle etiketlendi. Stance Detection görevi için GloVe ve FastText kelime gömme ile Support Vector Machines, Random Forest, k-Nearest Neighbor, XGBoost, Long-Short Term Memory (LSTM) ve Gated Recurrent Unit (GRU) modelleri kullanılmıştır. Ayrıca, duruş tespiti için transformer tabanlı bir yaklaşım da kullanılmıştır. Veri kümesinin hedefler arasındaki dengesizliği dikkate alındığında, bu algoritmalarla birlikte örnek azaltma ve örnek artırma yöntemleri de kullanılmıştır. Deney sonuçları, BERT tabanlı modellerin diğer tüm modelleri geride bıraktığını göstermektedir. Bu sonuçların yanı sıra, LSTM ve GRU da BERT tabanlı modelin sonuçlarına oldukça benzer sonuçlar üretmiştir. Yeni oluşturulan Türkçe veritabanı, bu araştırma alanı için değerli bir kaynak olarak kabul edilebilir ve gelecekte transformer tabanlı yaklaşımlarla birlikte kullanma potansiyeline sahiptir. Özetle, bu çalışma, Türkçe metin bağlamında duruş tespiti araştırma alanını ilerletmektedir.

Description

Keywords

İletişim, Siyasi Bilimler, Dil Ve Dil Bilim, Uluslararası İlişkiler, Bilgisayar Bilimleri, Yapay Zeka

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A

Source

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Volume

24

Issue

3

Start Page

602

End Page

619