A Discovery and Analysis Engine for Semantic Web
Loading...
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The Semantic Web promotes common data formats and exchange protocols on the web towards better interoperability among systems and machines. Although Semantic Web technologies are being used to semantically annotate data and resources for easier reuse, the ad hoc discovery of these data sources remains an open issue. Popular Semantic Web endpoint repositories such as SPARQLES, Linking Open Data Project (LOD Cloud), and LODStats do not include recently published datasets and are not updated frequently by the publishers. Hence, there is a need for a web-based dynamic search engine that discovers these endpoints and datasets at frequent intervals. To address this need, a novel web meta-crawling method is proposed for discovering Linked Data sources on the Web. We implemented the method in a prototype system named SPARQL Endpoints Discovery (SpEnD). In this paper, we describe the design and implementation of SpEnD, together with an analysis and evaluation of its operation, in comparison to the aforementioned static endpoint repositories in terms of time performance, availability, and size. Findings indicate that SpEnD outperforms existing Linked Data resource discovery methods.
Description
Keywords
Linked Data, Semantic Web, SPARQL Endpoints, Discovery, Search Engine
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Yumuşak, Semih...et al (2018). "A Discovery and Analysis Engine for Semantic Web", Companıon Proceedıngs Of The World Wıde Web Conference 2018 , pp. 1497-1505.
WoS Q
Scopus Q
Source
Companıon Proceedıngs Of The World Wıde Web Conference 2018
Volume
Issue
Start Page
1497
End Page
1505