Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Existence of a Periodic Mild Solution for a Nonlinear Fractional Differential Equation

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The aim of this manuscript is to analyze the existence of a periodic mild solution to the problem of the following nonlinear fractional differential equation (R)(0)D(t)(alpha)u(t) - lambda u(t) = f(t, u(t)), u(0) = u(1) = 0, 1 < alpha < 2, lambda is an element of R, where D-R(0)t(alpha), denotes the Riemann-Liouville fractional derivative. We obtained the expressions of the general solution for the linear fractional differential equation by making use of the Laplace and inverse Laplace transforms. By making use of the Banach contraction mapping principle and the Schaefer fixed point theorem, the existence results of one or at least one mild solution for a nonlinear fractional differential equation were given. (C) 2011 Elsevier Ltd. All rights reserved.

Description

Herzallah, Mohamed/0000-0003-3514-3709; Baleanu, Dumitru/0000-0002-0286-7244

Keywords

Fractional Derivative, Fractional Nonlinear Differential Equations, Boundary Value Problem, Schaefer Fixed Point Theorem

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Herzallah, Mohamed A. E.; Baleanu, Dumitru, "Existence of a periodic mild solution for a nonlinear fractional differential equation" Vol.64. No. 10, pp. 3059-3064, (2012)

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
16

Source

Volume

64

Issue

10

Start Page

3059

End Page

3064
PlumX Metrics
Citations

CrossRef : 13

Scopus : 18

Captures

Mendeley Readers : 7

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.15627919

Sustainable Development Goals