Existence of a Periodic Mild Solution for a Nonlinear Fractional Differential Equation
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Herzallah, Mohamed A. E. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2020-04-06T18:54:34Z | |
| dc.date.accessioned | 2025-09-18T14:10:45Z | |
| dc.date.available | 2020-04-06T18:54:34Z | |
| dc.date.available | 2025-09-18T14:10:45Z | |
| dc.date.issued | 2012 | |
| dc.description | Herzallah, Mohamed/0000-0003-3514-3709; Baleanu, Dumitru/0000-0002-0286-7244 | en_US |
| dc.description.abstract | The aim of this manuscript is to analyze the existence of a periodic mild solution to the problem of the following nonlinear fractional differential equation (R)(0)D(t)(alpha)u(t) - lambda u(t) = f(t, u(t)), u(0) = u(1) = 0, 1 < alpha < 2, lambda is an element of R, where D-R(0)t(alpha), denotes the Riemann-Liouville fractional derivative. We obtained the expressions of the general solution for the linear fractional differential equation by making use of the Laplace and inverse Laplace transforms. By making use of the Banach contraction mapping principle and the Schaefer fixed point theorem, the existence results of one or at least one mild solution for a nonlinear fractional differential equation were given. (C) 2011 Elsevier Ltd. All rights reserved. | en_US |
| dc.description.publishedMonth | 11 | |
| dc.identifier.citation | Herzallah, Mohamed A. E.; Baleanu, Dumitru, "Existence of a periodic mild solution for a nonlinear fractional differential equation" Vol.64. No. 10, pp. 3059-3064, (2012) | en_US |
| dc.identifier.doi | 10.1016/j.camwa.2011.12.060 | |
| dc.identifier.issn | 0898-1221 | |
| dc.identifier.scopus | 2-s2.0-84868197956 | |
| dc.identifier.uri | https://doi.org/10.1016/j.camwa.2011.12.060 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13775 | |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon-elsevier Science Ltd | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Derivative | en_US |
| dc.subject | Fractional Nonlinear Differential Equations | en_US |
| dc.subject | Boundary Value Problem | en_US |
| dc.subject | Schaefer Fixed Point Theorem | en_US |
| dc.title | Existence of a Periodic Mild Solution for a Nonlinear Fractional Differential Equation | en_US |
| dc.title | Existence of A Periodic Mild Solution for A Nonlinear Fractional Differential Equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Herzallah, Mohamed/0000-0003-3514-3709 | |
| gdc.author.id | Baleanu, Dumitru/0000-0002-0286-7244 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 6505909904 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Herzallah, Mohamed A. E.] Zagazig Univ, Fac Sci, Zagazig, Egypt; [Herzallah, Mohamed A. E.] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania | en_US |
| gdc.description.endpage | 3064 | en_US |
| gdc.description.issue | 10 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 3059 | en_US |
| gdc.description.volume | 64 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1982059881 | |
| gdc.identifier.wos | WOS:000311460600011 | |
| gdc.openalex.fwci | 2.15627919 | |
| gdc.openalex.normalizedpercentile | 0.87 | |
| gdc.opencitations.count | 16 | |
| gdc.plumx.crossrefcites | 13 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 18 | |
| gdc.scopus.citedcount | 18 | |
| gdc.wos.citedcount | 15 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |