Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Prediction of Financial Information Manipulation by Using Support Vector Machine and Probabilistic Neural Network

dc.contributor.author Ogut, Hulisi
dc.contributor.author Aktas, Ramazan
dc.contributor.author Alp, Ali
dc.contributor.author Doganay, M. Mete
dc.contributor.authorID 1109 tr_TR
dc.contributor.authorID 6974 tr_TR
dc.contributor.authorID 112010 tr_TR
dc.contributor.other 03.04. İşletme
dc.contributor.other 03. İktisadi ve İdari Birimler Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2016-04-29T07:55:57Z
dc.date.accessioned 2025-09-18T12:05:59Z
dc.date.available 2016-04-29T07:55:57Z
dc.date.available 2025-09-18T12:05:59Z
dc.date.issued 2009
dc.description.abstract Different methods have been used to predict financial information manipulation that can be defined as the distortion of the information in the financial statements. The purpose of this paper is to predict financial information manipulation by using support vector machine (SVM) and probabilistic neural network (PNN). A number of financial ratios are used as explanatory variables. Test performance of classification accuracy, sensitivity and specificity statistics for PNN and SVM are compared with the results of discriminant analysis, logistics regression (logit), and probit classifiers, which have been used in other studies. We have found that the performance of SVM and PNN are higher than that of the other classifiers analyzed before. Thus, both classifiers can be used as automated decision support system for the detection of financial information manipulation. (C) 2008 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 4
dc.identifier.citation Öğüt, H., Aktaş, R., Alp, A., Doğanay, M.M. (2009). Prediction of financial information manipulation by using support vector machine and probabilistic neural network. Expert Systems with Applications, 36(3), 5419-5423. http://dx.doi.org/10.1016/j.eswa.2008.06.055 en_US
dc.identifier.doi 10.1016/j.eswa.2008.06.055
dc.identifier.issn 0957-4174
dc.identifier.scopus 2-s2.0-58349094308
dc.identifier.uri https://doi.org/10.1016/j.eswa.2008.06.055
dc.identifier.uri https://hdl.handle.net/123456789/10762
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Financial Information Manipulation en_US
dc.subject Support Vector Machine en_US
dc.subject Probabilistic Neural Network en_US
dc.title Prediction of Financial Information Manipulation by Using Support Vector Machine and Probabilistic Neural Network en_US
dc.title Prediction of financial information manipulation by using support vector machine and probabilistic neural network tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Doğanay, Mehmet Mete
gdc.author.scopusid 24484220300
gdc.author.scopusid 24483208000
gdc.author.scopusid 24483144000
gdc.author.scopusid 24482897800
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ogut, Hulisi; Aktas, Ramazan; Alp, Ali] TOBB Univ Econ & Technol, Dept Business Adm, TR-06560 Ankara, Turkey; [Doganay, M. Mete] Cankaya Univ, Dept Business Adm, TR-06530 Ankara, Turkey en_US
gdc.description.endpage 5423 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5419 en_US
gdc.description.volume 36 en_US
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W1988498668
gdc.identifier.wos WOS:000263584100154
gdc.openalex.fwci 2.95488177
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 23
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 64
gdc.plumx.scopuscites 26
gdc.scopus.citedcount 26
gdc.wos.citedcount 18
relation.isAuthorOfPublication c7e7432b-c75f-4760-8c1b-a65578017166
relation.isAuthorOfPublication.latestForDiscovery c7e7432b-c75f-4760-8c1b-a65578017166
relation.isOrgUnitOfPublication 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218
relation.isOrgUnitOfPublication da4f5829-5e26-41bc-9c75-12779175bb39
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218

Files