Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Application of Bilstm-Crf Model With Different Embeddings for Product Name Extraction in Unstructured Turkish Text

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Springer London Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Named entity recognition (NER) plays a pivotal role in Natural Language Processing by identifying and classifying entities within textual data. While NER methodologies have seen significant advancements, driven by pretrained word embeddings and deep neural networks, the majority of these studies have focused on text with well-defined grammar and structure. A significant research gap exists concerning NER in informal or unstructured text, where traditional grammar rules and sentence structure are absent. This research addresses this crucial gap by focusing on the detection of product names within unstructured Turkish text. To accomplish this, we propose a deep learning-based NER model which combines a Bidirectional Long Short-Term Memory (BiLSTM) architecture with a Conditional Random Field (CRF) layer, further enhanced by FastText embeddings. To comprehensively evaluate and compare our model's performance, we explore different embedding approaches, including Word2Vec and Glove, in conjunction with the Bidirectional Long Short-Term Memory and Conditional Random Field (BiLSTM-CRF) model. Furthermore, we conduct comparisons against BERT to assess the efficacy of our approach. Our experimentation utilizes a Turkish e-commerce dataset gathered from the internet, where traditional grammatical and structural rules may not apply. The BiLSTM-CRF model with FastText embeddings achieved an F1 score value of 57.40%, a precision value of 55.78%, and a recall value of 59.12%. These results indicate promising performance in outperforming other baseline techniques. This research contributes to the field of NER by addressing the unique challenges posed by unstructured Turkish text and opens avenues for improved entity recognition in informal language settings, with potential applications across various domains.

Description

Arslan, Serdar/0000-0003-3115-0741

Keywords

Bert, Bilstm-Crf, Deep Learning, Fasttext, Named Entity Recognition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Arslan, Serdar (2024). "Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text", Neural Computing and Applications, Vol. 36, No. 15, pp. 8371-8382.

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
8

Source

Volume

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 18

Captures

Mendeley Readers : 35

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
12.77557098

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo