Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Application of Bilstm-Crf Model With Different Embeddings for Product Name Extraction in Unstructured Turkish Text

dc.contributor.author Arslan, Serdar
dc.contributor.authorID 325411 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-28T13:28:20Z
dc.date.accessioned 2025-09-18T14:09:59Z
dc.date.available 2024-05-28T13:28:20Z
dc.date.available 2025-09-18T14:09:59Z
dc.date.issued 2024
dc.description Arslan, Serdar/0000-0003-3115-0741 en_US
dc.description.abstract Named entity recognition (NER) plays a pivotal role in Natural Language Processing by identifying and classifying entities within textual data. While NER methodologies have seen significant advancements, driven by pretrained word embeddings and deep neural networks, the majority of these studies have focused on text with well-defined grammar and structure. A significant research gap exists concerning NER in informal or unstructured text, where traditional grammar rules and sentence structure are absent. This research addresses this crucial gap by focusing on the detection of product names within unstructured Turkish text. To accomplish this, we propose a deep learning-based NER model which combines a Bidirectional Long Short-Term Memory (BiLSTM) architecture with a Conditional Random Field (CRF) layer, further enhanced by FastText embeddings. To comprehensively evaluate and compare our model's performance, we explore different embedding approaches, including Word2Vec and Glove, in conjunction with the Bidirectional Long Short-Term Memory and Conditional Random Field (BiLSTM-CRF) model. Furthermore, we conduct comparisons against BERT to assess the efficacy of our approach. Our experimentation utilizes a Turkish e-commerce dataset gathered from the internet, where traditional grammatical and structural rules may not apply. The BiLSTM-CRF model with FastText embeddings achieved an F1 score value of 57.40%, a precision value of 55.78%, and a recall value of 59.12%. These results indicate promising performance in outperforming other baseline techniques. This research contributes to the field of NER by addressing the unique challenges posed by unstructured Turkish text and opens avenues for improved entity recognition in informal language settings, with potential applications across various domains. en_US
dc.description.publishedMonth 5
dc.description.sponsorship Cankaya University en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.citation Arslan, Serdar (2024). "Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text", Neural Computing and Applications, Vol. 36, No. 15, pp. 8371-8382. en_US
dc.identifier.doi 10.1007/s00521-024-09532-1
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85185472823
dc.identifier.uri https://doi.org/10.1007/s00521-024-09532-1
dc.identifier.uri https://hdl.handle.net/20.500.12416/13549
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bert en_US
dc.subject Bilstm-Crf en_US
dc.subject Deep Learning en_US
dc.subject Fasttext en_US
dc.subject Named Entity Recognition en_US
dc.title Application of Bilstm-Crf Model With Different Embeddings for Product Name Extraction in Unstructured Turkish Text en_US
dc.title Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Arslan, Serdar/0000-0003-3115-0741
gdc.author.institutional Arslan, Serdar
gdc.author.scopusid 57767747500
gdc.author.wosid Arslan, Serdar/Aad-7744-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Arslan, Serdar] Cankaya Univ, Comp Engn Dept, TR-06790 Etimesgut, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4391991595
gdc.identifier.wos WOS:001166470700003
gdc.openalex.fwci 12.77557098
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 8
gdc.plumx.mendeley 35
gdc.plumx.scopuscites 18
gdc.scopus.citedcount 18
gdc.wos.citedcount 14
relation.isAuthorOfPublication ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isAuthorOfPublication.latestForDiscovery ee02ccda-1b5e-4bba-b8b3-ece13ce2ec47
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files