Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Detection of Rheumatoid Arthritis From Hand Radiographs Using a Convolutional Neural Network

dc.contributor.author Ureten, Kemal
dc.contributor.author Erbay, Hasan
dc.contributor.author Maras, Hadi Hakan
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-05-20T19:34:07Z
dc.date.accessioned 2025-09-18T14:09:24Z
dc.date.available 2020-05-20T19:34:07Z
dc.date.available 2025-09-18T14:09:24Z
dc.date.issued 2020
dc.description.abstract Introduction Plain hand radiographs are the first-line and most commonly used imaging methods for diagnosis or differential diagnosis of rheumatoid arthritis (RA) and for monitoring disease activity. In this study, we used plain hand radiographs and tried to develop an automated diagnostic method using the convolutional neural networks to help physicians while diagnosing rheumatoid arthritis. Methods A convolutional neural network (CNN) is a deep learning method based on a multilayer neural network structure. The network was trained on a dataset containing 135 radiographs of the right hands, of which 61 were normal and 74 RA, and tested it on 45 radiographs, of which 20 were normal and 25 RA. Results The accuracy of the network was 73.33% and the error rate 0.0167. The sensitivity of the network was 0.6818; the specificity was 0.7826 and the precision 0.7500. Conclusion Using only pixel information on hand radiographs, a multi-layer CNN architecture with online data augmentation was designed. The performance metrics such as accuracy, error rate, sensitivity, specificity, and precision state shows that the network is promising in diagnosing rheumatoid arthritis. en_US
dc.description.publishedMonth 4
dc.identifier.citation Üreten, K.; Erbay, H.; Maraş, H.H., "Detection of Rheumatoid Arthritis From Hand Radiographs Using A Convolutional Neural Network", Clinical Rheumatology, Vol. 39, No. 4, pp. 969-974, (2020). en_US
dc.identifier.doi 10.1007/s10067-019-04487-4
dc.identifier.issn 0770-3198
dc.identifier.issn 1434-9949
dc.identifier.scopus 2-s2.0-85062710388
dc.identifier.uri https://doi.org/10.1007/s10067-019-04487-4
dc.identifier.uri https://hdl.handle.net/20.500.12416/13359
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional Neural Network en_US
dc.subject Deep Learning en_US
dc.subject Plain Hand Radiographs en_US
dc.subject Rheumatoid Arthritis en_US
dc.title Detection of Rheumatoid Arthritis From Hand Radiographs Using a Convolutional Neural Network en_US
dc.title Detection of Rheumatoid Arthritis From Hand Radiographs Using A Convolutional Neural Network tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Maraş, Hadi Hakan
gdc.author.scopusid 6507776586
gdc.author.scopusid 55900695500
gdc.author.scopusid 56875440000
gdc.author.wosid Maras, Hakan/G-1236-2017
gdc.author.wosid Erbay, Hasan/F-1093-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, TR-71450 Kirikkale, Turkey; [Ureten, Kemal] Cankaya Univ, Dept Comp Engn, Ankara, Turkey; [Erbay, Hasan] Kirikkale Univ, Fac Engn, Dept Comp Engn, Kirikkale, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.endpage 974 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 969 en_US
gdc.description.volume 39 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W2921857920
gdc.identifier.pmid 30850962
gdc.identifier.wos WOS:000524870500001
gdc.openalex.fwci 9.61001527
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 58
gdc.plumx.crossrefcites 29
gdc.plumx.mendeley 85
gdc.plumx.pubmedcites 28
gdc.plumx.scopuscites 68
gdc.scopus.citedcount 68
gdc.wos.citedcount 60
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files