Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methods

dc.contributor.author Maras, Hadi Hakan
dc.contributor.author Ureten, Kemal
dc.contributor.authorID 34410 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-02-05T12:49:12Z
dc.date.accessioned 2025-09-18T12:06:23Z
dc.date.available 2024-02-05T12:49:12Z
dc.date.available 2025-09-18T12:06:23Z
dc.date.issued 2022
dc.description.abstract Rheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis. en_US
dc.description.publishedMonth 4
dc.identifier.citation Üreten, K.; Maraş, H.H. (2022). "Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods", Journal of Digital Imaging, Vol.35, No.2, pp.193-199. en_US
dc.identifier.doi 10.1007/s10278-021-00564-w
dc.identifier.issn 0897-1889
dc.identifier.issn 1618-727X
dc.identifier.scopus 2-s2.0-85122651306
dc.identifier.uri https://doi.org/10.1007/s10278-021-00564-w
dc.identifier.uri https://hdl.handle.net/123456789/10889
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Rheumatoid Arthritis en_US
dc.subject Osteoarthritis en_US
dc.subject Deep Learning en_US
dc.subject Object Detection en_US
dc.subject Transfer Learning en_US
dc.subject Data Augmentation en_US
dc.title Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs With Deep Learning Methods en_US
dc.title Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Maraş, Hadi Hakan
gdc.author.scopusid 6507776586
gdc.author.scopusid 56875440000
gdc.author.wosid Maras, Hakan/G-1236-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, TR-71450 Kirikkale, Turkey; [Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkey en_US
gdc.description.endpage 199 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 193 en_US
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4205221175
gdc.identifier.pmid 35018539
gdc.identifier.wos WOS:000741249100004
gdc.openalex.fwci 11.57737364
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 37
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 68
gdc.plumx.pubmedcites 12
gdc.plumx.scopuscites 50
gdc.scopus.citedcount 49
gdc.wos.citedcount 37
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files