Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Topic Model Implementation To Find Related Documents In Corporate Archives In Real Life: “A Case Scenario On Knowledge Retrieval”

dc.contributor.authorMedeni, İhsan Tolga
dc.contributor.authorMedeni, Tunç Durmuş
dc.contributor.authorID181215tr_TR
dc.date.accessioned2024-05-14T08:03:26Z
dc.date.available2024-05-14T08:03:26Z
dc.date.issued2013
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractToday’s organizations were mostly built over their documents. These documents are very crucial sources of knowledge. Even they know the existence of these documents, most of the time, it is nearly impossible to extract captive knowledge inside. In these conditions, organizations choose re-prepare same document again rather than finding proper documents in the archives. On the other hand, finding these documents would save precious time and decrease redundancy of the work. Topic model idea basically focuses on extraction of knowledge from these types of documents. In this study, our aim is to give a summary of Topic Model research and try to explain latest model concept over an imaginary case scenarioen_US
dc.description.publishedMonth6
dc.identifier.citationMedeni, İhsan Tolga; Medeni, Tunç Durmuş (2013). "Topic Model Implementation To Find Related Documents In Corporate Archives In Real Life: “A Case Scenario On Knowledge Retrieval”", International Journal of eBusiness and eGovernment Studies, Vol.5, No.1, pp.98-107.en_US
dc.identifier.endpage107en_US
dc.identifier.issn2146-0744
dc.identifier.issue1en_US
dc.identifier.startpage98en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/8291
dc.identifier.volume5en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of eBusiness and eGovernment Studiesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTopic Modelen_US
dc.subjectKnowledge Extractionen_US
dc.subjectLatent Semantic Analysis (LSA)en_US
dc.subjectProbabilistic Latent Semantic Analysis (pLSA)en_US
dc.subjectLatent Dirichlet Allocation (LDA)en_US
dc.titleTopic Model Implementation To Find Related Documents In Corporate Archives In Real Life: “A Case Scenario On Knowledge Retrieval”tr_TR
dc.titleTopic Model Implementation To Find Related Documents In Corporate Archives In Real Life: “A Case Scenario On Knowledge Retrieval”en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
294.99 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: