Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Texture segmentation using the mixtures of principal component analyzers

dc.contributor.authorMusa, Mohamed E.M.
dc.contributor.authorDuin, Robert P.W.
dc.contributor.authorDe Ridder, Dick
dc.contributor.authorAtalay, Volkan
dc.date.accessioned2023-01-27T10:46:01Z
dc.date.available2023-01-27T10:46:01Z
dc.date.issued2003
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThe problem of segmenting an image into several modalities representing different textures can be modelled using Gaussian mixtures. Moreover, texture image patches when translated, rotated or scaled lie in low dimensional subspaces of the high-dimensional space spanned by the grey values. These two aspects make the mixture of local subspace models worth consideration for segmenting this type of images. In recent years a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of subspaces and subspace dimensionalities. To make the model autonomous, we propose a greedy EM algorithm to find a suboptimal number of subspaces, besides using a global retained variance ratio to estimate for each subspace the dimensionality that retains the given variability ratio. We provide experimental results for testing the proposed method on texture segmentation.en_US
dc.identifier.citationMusa, Mohamed E.M...et al (2003). "Texture segmentation using the mixtures of principal component analyzers", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 2869, pp. 505-512.en_US
dc.identifier.doi10.1007/978-3-540-39737-3_63
dc.identifier.endpage512en_US
dc.identifier.issn0302-9743
dc.identifier.startpage505en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/6100
dc.identifier.volume2869en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTexture segmentation using the mixtures of principal component analyzerstr_TR
dc.titleTexture Segmentation Using the Mixtures of Principal Component Analyzersen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: