Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Texture segmentation using the mixtures of principal component analyzers

dc.contributor.author Musa, Mohamed E.M.
dc.contributor.author Duin, Robert P.W.
dc.contributor.author De Ridder, Dick
dc.contributor.author Atalay, Volkan
dc.date.accessioned 2023-01-27T10:46:01Z
dc.date.available 2023-01-27T10:46:01Z
dc.date.issued 2003
dc.department Çankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.abstract The problem of segmenting an image into several modalities representing different textures can be modelled using Gaussian mixtures. Moreover, texture image patches when translated, rotated or scaled lie in low dimensional subspaces of the high-dimensional space spanned by the grey values. These two aspects make the mixture of local subspace models worth consideration for segmenting this type of images. In recent years a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of subspaces and subspace dimensionalities. To make the model autonomous, we propose a greedy EM algorithm to find a suboptimal number of subspaces, besides using a global retained variance ratio to estimate for each subspace the dimensionality that retains the given variability ratio. We provide experimental results for testing the proposed method on texture segmentation. en_US
dc.identifier.citation Musa, Mohamed E.M...et al (2003). "Texture segmentation using the mixtures of principal component analyzers", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 2869, pp. 505-512. en_US
dc.identifier.doi 10.1007/978-3-540-39737-3_63
dc.identifier.endpage 512 en_US
dc.identifier.issn 0302-9743
dc.identifier.startpage 505 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/6100
dc.identifier.volume 2869 en_US
dc.language.iso en en_US
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Texture segmentation using the mixtures of principal component analyzers tr_TR
dc.title Texture Segmentation Using the Mixtures of Principal Component Analyzers en_US
dc.type Article en_US
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: