Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
IOS Press
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Clinical decision support systems are data analysis software that supports health professionals' decision-making the process to reach their ultimate outcome, taking into account patient information. However, the need for decision support systems cannot be denied because of most activities in the field of health care within the decision-making process. Decision support systems used for diagnosis are designed based on disease due to the complexity of diseases, symptoms, and disease-symptoms relationships. In the design and implementation of clinical decision support systems, mathematical modeling, pattern recognition and statistical analysis techniques of large databases and data mining techniques such as classification are also widely used. Classification of data is difficult in case of the small and/or imbalanced data set and this problem directly affects the classification performance. Small and/or imbalance dataset has become a major problem in data mining because classification algorithms are developed based on the assumption that the data sets are balanced and large enough. Most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Most health data are small and imbalanced by nature. Learning from imbalanced and small data sets is an important and unsettled problem. Within the scope of the study, the publicly accessible data set, hepatitis was oversampled by distance-based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms. Considering the classification scores of four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree), optimal synthetic data generation rate is recommended.
Description
Keywords
Imbalanced Data Set, Clinical Decision Support System, Machine Learning, Oversampling Methods, Small Data Set
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Par, O.E.; Akcapinar Sezer, E.; Sever, H.,"Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set",Studies in Health Technology and Informatics, Vol, 262, pp. 344-347, (2019).
WoS Q
Scopus Q
Source
Studies in Health Technology and Informatics
Volume
262
Issue
Start Page
344
End Page
347