Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Perlin Random Erasing for Data Augmentation

dc.contributor.author Saran, Ayse Nurdan
dc.contributor.author Saran, Murat
dc.contributor.author Nar, Fatih
dc.contributor.authorID 17753 tr_TR
dc.contributor.authorID 20868 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-12-02T11:36:03Z
dc.date.accessioned 2025-09-18T14:09:39Z
dc.date.available 2022-12-02T11:36:03Z
dc.date.available 2025-09-18T14:09:39Z
dc.date.issued 2021
dc.description Nar, Fatih/0000-0002-3003-8136 en_US
dc.description.abstract In the last decade, Deep Learning is applied in a wide range of problems with tremendous success. Large data, increased computational resources, and theoretical improvements are main reasons for this success. As the dataset grows, the real-world is better represented, allows developing a model that can generalize. However, creating a labeled dataset is expensive, time-consuming, or sometimes even challenging. Therefore, researchers proposed data augmentation methods to increase dataset size by creating variations of the existing data. This study proposes an extension to Random Erasing data augmentation method by introducing smoothness. The proposed method provides better performance compared to Random Erasing data augmentation method, which is shown using a transfer learning scenario on the UC Merced Land-use image dataset. en_US
dc.description.publishedMonth 6
dc.identifier.citation Saran, Murat; Nar, Fatih; Saran, Ayse Nurdan (2021). "Perlin random erasing for data augmentation", SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings, 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021Virtual, Istanbul9 June 2021through 11 June 2021. en_US
dc.identifier.doi 10.1109/SIU53274.2021.9477804
dc.identifier.isbn 9781665436496
dc.identifier.scopus 2-s2.0-85111413885
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9477804
dc.identifier.uri https://hdl.handle.net/20.500.12416/13452
dc.language.iso tr en_US
dc.publisher Ieee en_US
dc.relation.ispartof 29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data Augmentation en_US
dc.subject Random Erasing en_US
dc.subject Deep Learning en_US
dc.title Perlin Random Erasing for Data Augmentation en_US
dc.title Perlin random erasing for data augmentation tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Nar, Fatih/0000-0002-3003-8136
gdc.author.institutional Saran, Ayşe Nurdan
gdc.author.institutional Saran, Murat
gdc.author.institutional Nar, Fatih
gdc.author.scopusid 24722292900
gdc.author.scopusid 9269153000
gdc.author.scopusid 25651951700
gdc.author.wosid Saran, Murat/U-5382-2018
gdc.author.wosid Saran, Nurdan/Izq-0124-2023
gdc.author.wosid Nar, Fatih/B-8130-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Saran, Murat; Saran, Ayse Nurdan] Cankaya Univ, Dept Comp Engn, Ankara, Turkey; [Nar, Fatih] Ankara Yildirim Beyazit Univ, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W3184567417
gdc.identifier.wos WOS:000808100700047
gdc.openalex.fwci 1.69152354
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 10
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.wos.citedcount 8
relation.isAuthorOfPublication 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isAuthorOfPublication f92fb8be-a1b3-4888-abaf-40ad03004780
relation.isAuthorOfPublication 4cf48a50-3268-44f4-9f6d-df441e0e2cfe
relation.isAuthorOfPublication.latestForDiscovery 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files