Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Intrusion Detection Using Big Data and Deep Learning Techniques

dc.contributor.author Dogdu, Erdogan
dc.contributor.author Faker, Osama
dc.date.accessioned 2020-02-28T12:18:23Z
dc.date.accessioned 2025-09-18T12:09:40Z
dc.date.available 2020-02-28T12:18:23Z
dc.date.available 2025-09-18T12:09:40Z
dc.date.issued 2019
dc.description Faker, Osama/0000-0002-9281-7944; Dogdu, Erdogan/0000-0001-5987-0164 en_US
dc.description.abstract In this paper, Big Data and Deep Learning Techniques are integrated to improve the performance of intrusion detection systems. Three classifiers are used to classify network traffic datasets, and these are Deep Feed-Forward Neural Network (DNN) and two ensemble techniques, Random Forest and Gradient Boosting Tree (GBT). To select the most relevant attributes from the datasets, we use a homogeneity metric to evaluate features. Two recently published datasets UNSW NB15 and CICIDS2017 are used to evaluate the proposed method. 5-fold cross validation is used in this work to evaluate the machine learning models. We implemented the method using the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library to implement the deep learning technique while the ensemble techniques are implemented using Apache Spark Machine Learning Library. The results show a high accuracy with DNN for binary and multiclass classification on UNSW NB15 dataset with accuracies at 99.16% for binary classification and 97.01% for multiclass classification. While GBT classifier achieved the best accuracy for binary classification with the CICIDS2017 dataset at 99.99%, for multiclass classification DNN has the highest accuracy with 99.56%. en_US
dc.identifier.citation Faker, Osama; Dogdu, Erdogan, "Intrusion Detection Using Big Data and Deep Learning Techniques", Proceedings of the 2019 Annual ACM Southeast Conference (ACMSE 2019), pp. 86-93, (2019). en_US
dc.identifier.doi 10.1145/3299815.3314439
dc.identifier.isbn 9781450362511
dc.identifier.scopus 2-s2.0-85065927865
dc.identifier.uri https://doi.org/10.1145/3299815.3314439
dc.identifier.uri https://hdl.handle.net/20.500.12416/11463
dc.language.iso en en_US
dc.publisher Assoc Computing Machinery en_US
dc.relation.ispartof Annual ACM Southeast Conference (ACMSE) -- APR 18-20, 2019 -- Kennesaw State Univ, Kennesaw, GA en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Intrusion Detection System en_US
dc.subject Big Data en_US
dc.subject Machine Learning en_US
dc.subject Artificial Neural Networks en_US
dc.subject Deep Learning en_US
dc.subject Ensemble Techniques en_US
dc.subject Feature Selection en_US
dc.title Intrusion Detection Using Big Data and Deep Learning Techniques en_US
dc.title Intrusion Detection Using Big Data and Deep Learning Techniques tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Faker, Osama/0000-0002-9281-7944
gdc.author.id Dogdu, Erdogan/0000-0001-5987-0164
gdc.author.scopusid 57208838488
gdc.author.scopusid 6603501593
gdc.author.wosid Faker, Osama/Ahd-7038-2022
gdc.bip.impulseclass C3
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Faker, Osama; Dogdu, Erdogan] Cankaya Univ, Ankara, Turkey; [Dogdu, Erdogan] Georgia State Univ, Atlanta, GA 30303 USA en_US
gdc.description.endpage 93 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 86 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2944643572
gdc.identifier.wos WOS:000490458700013
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 91.0
gdc.oaire.influence 1.8041654E-8
gdc.oaire.isgreen false
gdc.oaire.popularity 1.2923172E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 23.2997663
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 158
gdc.plumx.crossrefcites 158
gdc.plumx.mendeley 225
gdc.plumx.scopuscites 201
gdc.scopus.citedcount 211
gdc.virtual.author Doğdu, Erdoğan
gdc.wos.citedcount 139
relation.isAuthorOfPublication 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files