Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Exact Forecasting for Covid-19 Data: Case Study for Turkey

dc.contributor.author Dinckal, Cigdem
dc.contributor.authorID 26773 tr_TR
dc.contributor.other 06.05. İnşaat Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-20T13:00:27Z
dc.date.accessioned 2025-09-18T12:47:33Z
dc.date.available 2024-03-20T13:00:27Z
dc.date.available 2025-09-18T12:47:33Z
dc.date.issued 2021
dc.description.abstract The novel coronavirus COVID-19 (SARS-CoV-2) with the first clinical case emerged in the city of Wuhan in China in December 2019. Then it has spread to the entire world in very short time and turned into a global problem, namely, it has rapidly become a pandemic. Within this context, many studies have attempted to predict the consequences of the pandemic in certain countries. Nevertheless, these studies have focused on some parameters such as reproductive number, recovery rate and mortality rate when performing forecasting. This study aims to forecast COVID-19 data in Turkey with use of a new technique which is a combination of classical exponential smoothing and moving average. There is no need for reproductive number, recovery rate and mortality rate computation in this proposed technique. Simulations are carried out for the number of daily cases, active cases (those are cases with no symptoms), daily tests, recovering patients, patients in the intensive care unit, daily intubated patients, and deaths forecasting and results are tested on Mean Absolute Percentage Error (MAPE) criterion. It is shown that this technique captured the system dynamic behavior in Turkey and made exact predictions with the use of real time dataset. en_US
dc.identifier.citation Dinçkal, Ç. (2021). "Exact Forecasting for COVID-19 Data: Case Study for Turkey", Advances in Data Science and Adaptive Analysis, Vol.13, No.2. en_US
dc.identifier.doi 10.1142/S2424922X21500066
dc.identifier.issn 2424-922X
dc.identifier.issn 2424-9238
dc.identifier.uri https://doi.org/10.1142/S2424922X21500066
dc.identifier.uri https://hdl.handle.net/123456789/11839
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Covid-19 Data en_US
dc.subject Novel Forecasting Method en_US
dc.subject Moving Average en_US
dc.subject Classical Exponential Smoothing en_US
dc.subject Mean Absolute Percentage Error en_US
dc.title Exact Forecasting for Covid-19 Data: Case Study for Turkey en_US
dc.title Exact Forecasting for COVID-19 Data: Case Study for Turkey tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dinçkal, Çiğdem
gdc.author.wosid Dinçkal, Çiğdem/Hmv-6655-2023
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Dinckal, Cigdem] Cankaya Univ, Dept Civil Engn, Fac Engn, Ankara, Turkey en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 13 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.identifier.openalex W3191453491
gdc.identifier.wos WOS:000729764900001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.09
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.wos.citedcount 0
relation.isAuthorOfPublication 544b1cc8-feff-45d5-9442-abe3dcb1b07b
relation.isAuthorOfPublication.latestForDiscovery 544b1cc8-feff-45d5-9442-abe3dcb1b07b
relation.isOrgUnitOfPublication 77a9f192-0d56-4f8e-adf2-a1c91a7124c9
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 77a9f192-0d56-4f8e-adf2-a1c91a7124c9

Files