Fusion of Smartphone Sensor Data for Classification of Daily User Activities
| dc.contributor.author | Ozcelik, Erol | |
| dc.contributor.author | Misra, Sanjay | |
| dc.contributor.author | Damasevicius, Robertas | |
| dc.contributor.author | Maskeliunas, Rytis | |
| dc.contributor.author | Sengul, Gokhan | |
| dc.contributor.authorID | 115500 | tr_TR |
| dc.contributor.other | 02.04. Psikoloji | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-05-11T10:07:42Z | |
| dc.date.accessioned | 2025-09-18T15:44:45Z | |
| dc.date.available | 2022-05-11T10:07:42Z | |
| dc.date.available | 2025-09-18T15:44:45Z | |
| dc.date.issued | 2021 | |
| dc.description | Misra, Sanjay/0000-0002-3556-9331; Maskeliunas, Rytis/0000-0002-2809-2213; Sengul, Gokhan/0000-0003-2273-4411 | en_US |
| dc.description.abstract | New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.identifier.citation | Şengül, Gökhan...at all (2021). "Fusion of smartphone sensor data for classification of daily user activities", Multimedia Tools and Applications, Vol. 80, No. 24, pp. 33527-33546. | en_US |
| dc.identifier.doi | 10.1007/s11042-021-11105-6 | |
| dc.identifier.issn | 1380-7501 | |
| dc.identifier.issn | 1573-7721 | |
| dc.identifier.scopus | 2-s2.0-85113190488 | |
| dc.identifier.uri | https://doi.org/10.1007/s11042-021-11105-6 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14382 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Human Activity Recognition | en_US |
| dc.subject | Wearable Intelligence | en_US |
| dc.subject | Feature Fusion | en_US |
| dc.title | Fusion of Smartphone Sensor Data for Classification of Daily User Activities | en_US |
| dc.title | Fusion of smartphone sensor data for classification of daily user activities | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Misra, Sanjay/0000-0002-3556-9331 | |
| gdc.author.id | Maskeliunas, Rytis/0000-0002-2809-2213 | |
| gdc.author.id | Sengul, Gokhan/0000-0003-2273-4411 | |
| gdc.author.institutional | Özçelik, Erol | |
| gdc.author.scopusid | 8402817900 | |
| gdc.author.scopusid | 26424777100 | |
| gdc.author.scopusid | 56962766700 | |
| gdc.author.scopusid | 6603451290 | |
| gdc.author.scopusid | 27467587600 | |
| gdc.author.wosid | Ozcelik, Erol/Aad-4252-2019 | |
| gdc.author.wosid | Şengül, Gökhan/Aaa-2788-2022 | |
| gdc.author.wosid | Misra, Sanjay/K-2203-2014 | |
| gdc.author.wosid | Maskeliunas, Rytis/J-7173-2017 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania | en_US |
| gdc.description.endpage | 33546 | en_US |
| gdc.description.issue | 24 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 33527 | en_US |
| gdc.description.volume | 80 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3193874194 | |
| gdc.identifier.wos | WOS:000686840500002 | |
| gdc.openalex.fwci | 5.01017237 | |
| gdc.openalex.normalizedpercentile | 0.95 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 17 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 25 | |
| gdc.plumx.scopuscites | 24 | |
| gdc.scopus.citedcount | 24 | |
| gdc.wos.citedcount | 18 | |
| relation.isAuthorOfPublication | 429d992d-cf07-41a7-a1c5-6238f8a93f59 | |
| relation.isAuthorOfPublication.latestForDiscovery | 429d992d-cf07-41a7-a1c5-6238f8a93f59 | |
| relation.isOrgUnitOfPublication | a992ac7e-d4b6-49ec-a865-b3e838e73b75 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a992ac7e-d4b6-49ec-a865-b3e838e73b75 |