Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fusion of Smartphone Sensor Data for Classification of Daily User Activities

dc.contributor.author Ozcelik, Erol
dc.contributor.author Misra, Sanjay
dc.contributor.author Damasevicius, Robertas
dc.contributor.author Maskeliunas, Rytis
dc.contributor.author Sengul, Gokhan
dc.contributor.authorID 115500 tr_TR
dc.contributor.other 02.04. Psikoloji
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-05-11T10:07:42Z
dc.date.accessioned 2025-09-18T15:44:45Z
dc.date.available 2022-05-11T10:07:42Z
dc.date.available 2025-09-18T15:44:45Z
dc.date.issued 2021
dc.description Misra, Sanjay/0000-0002-3556-9331; Maskeliunas, Rytis/0000-0002-2809-2213; Sengul, Gokhan/0000-0003-2273-4411 en_US
dc.description.abstract New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. en_US
dc.description.publishedMonth 10
dc.identifier.citation Şengül, Gökhan...at all (2021). "Fusion of smartphone sensor data for classification of daily user activities", Multimedia Tools and Applications, Vol. 80, No. 24, pp. 33527-33546. en_US
dc.identifier.doi 10.1007/s11042-021-11105-6
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85113190488
dc.identifier.uri https://doi.org/10.1007/s11042-021-11105-6
dc.identifier.uri https://hdl.handle.net/20.500.12416/14382
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Human Activity Recognition en_US
dc.subject Wearable Intelligence en_US
dc.subject Feature Fusion en_US
dc.title Fusion of Smartphone Sensor Data for Classification of Daily User Activities en_US
dc.title Fusion of smartphone sensor data for classification of daily user activities tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Maskeliunas, Rytis/0000-0002-2809-2213
gdc.author.id Sengul, Gokhan/0000-0003-2273-4411
gdc.author.institutional Özçelik, Erol
gdc.author.scopusid 8402817900
gdc.author.scopusid 26424777100
gdc.author.scopusid 56962766700
gdc.author.scopusid 6603451290
gdc.author.scopusid 27467587600
gdc.author.wosid Ozcelik, Erol/Aad-4252-2019
gdc.author.wosid Şengül, Gökhan/Aaa-2788-2022
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Maskeliunas, Rytis/J-7173-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania en_US
gdc.description.endpage 33546 en_US
gdc.description.issue 24 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 33527 en_US
gdc.description.volume 80 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3193874194
gdc.identifier.wos WOS:000686840500002
gdc.openalex.fwci 5.01017237
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 17
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 24
gdc.scopus.citedcount 24
gdc.wos.citedcount 18
relation.isAuthorOfPublication 429d992d-cf07-41a7-a1c5-6238f8a93f59
relation.isAuthorOfPublication.latestForDiscovery 429d992d-cf07-41a7-a1c5-6238f8a93f59
relation.isOrgUnitOfPublication a992ac7e-d4b6-49ec-a865-b3e838e73b75
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery a992ac7e-d4b6-49ec-a865-b3e838e73b75

Files