Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Link Prediction in Knowledge Graphs With Numeric Triples Using Clustering

dc.contributor.author Choupani, R.
dc.contributor.author Dogdu, E.
dc.contributor.author Bayrak, B.
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-06-14T10:13:59Z
dc.date.accessioned 2025-09-18T12:08:29Z
dc.date.available 2022-06-14T10:13:59Z
dc.date.available 2025-09-18T12:08:29Z
dc.date.issued 2020
dc.description Ankura TM; IBM; IEEE; IEEE Computer Society en_US
dc.description.abstract Knowledge graphs (KG) include large amounts of structured data in many different domains. Knowledge or information is captured by entities and relationships between them in KG. One of the open problems in knowledge graphs area is "link prediction", that is predicting new relationships or links between the given existing entities in KG. A recent approach in graph-based learning problems is "graph embedding", in which graphs are represented as low-dimensional vectors. Then, it is easier to make link predictions using these vector representations. We also use graph embedding for graph representations. A sub-problem of link prediction in KG is the link prediction in the presence of literal values, and specifically numeric values, on the receiving end of links. This is a harder problem because of the numeric literal values taking arbitrary values. For such entries link prediction models cannot work, because numeric entities are not embedded in the vector space. There are several studies in this area, but they are all complex approaches. In this study, we propose a novel approach for link prediction in KG in the presence of numerical values. To overcome the embedding problem of numeric values, we used a clustering approach for clustering these numerical values in a knowledge graph and then used the clusters for performing link prediction. Then we clustered the numerical values to enhance the prediction rates and evaluated our method on a part of Freebase knowledge graph, which includes entities, relations, and numerical literals. Test results show that a considerable increase in link prediction rate can be achieved in comparison to previous studies. © 2020 IEEE. en_US
dc.identifier.citation Bayrak, Betül; Choupani, Roya; Doğdu, Erdoğan (2020). "Link Prediction in Knowledge Graphs with Numeric Triples Using Clustering", Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, Virtual, Atlanta, 10 December 2020 through 13 December 2020, pp, 4492-4498. en_US
dc.identifier.doi 10.1109/BigData50022.2020.9378475
dc.identifier.isbn 9781728162515
dc.identifier.scopus 2-s2.0-85103843233
dc.identifier.uri https://doi.org/10.1109/BigData50022.2020.9378475
dc.identifier.uri https://hdl.handle.net/123456789/11145
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 -- 8th IEEE International Conference on Big Data, Big Data 2020 -- 10 December 2020 through 13 December 2020 -- Virtual, Atlanta -- 168025 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Knowledge Graph Embedding en_US
dc.subject Knowledge Graphs en_US
dc.subject Link Prediction en_US
dc.title Link Prediction in Knowledge Graphs With Numeric Triples Using Clustering en_US
dc.title Link Prediction in Knowledge Graphs with Numeric Triples Using Clustering tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Choupanı, Roya
gdc.author.scopusid 57222264081
gdc.author.scopusid 8662600400
gdc.author.scopusid 6603501593
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Bayrak B., Gazi University, Computer Engineering Department, Ankara, Turkey; Choupani R., Cankaya University, Computer Engineering Department, Ankara, Turkey; Dogdu E., Angelo State University, Department of Computer Science, San Angelo, TX, United States en_US
gdc.description.endpage 4498 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 4492 en_US
gdc.identifier.openalex W3138482050
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.21
gdc.opencitations.count 2
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isAuthorOfPublication 2f2010e6-da07-4e28-95f8-660c2ca696ff
relation.isAuthorOfPublication.latestForDiscovery 2f2010e6-da07-4e28-95f8-660c2ca696ff
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files